

Identifying Neutrino Final States and Energies in MicroBooNE with New Deep-Learning Based LArTPC Reconstruction Frameworks

Matthew Rosenberg on behalf of the MicroBooNE Collaboration

Overview of MicroBooNE's New CNN-Based LArTPC Reconstruction

1) Pixel processing

- A) SSNet CNN tags pixels as track or shower pixels
- B) Use cosmic-background tagging from Wire-Cell reconstruction [1]
- C) LArMatch UNET CNN takes 3D-consistent wire intersections and:
 - Finds true 3D energy deposition points (spacepoints)
 - Locates keypoints (neutrino vertices, track start/end points, etc.)

2) 3D spacepoint clustering:

- Partition spacepoints using SSNet and Wire-Cell cosmic tags
- Density-Based Scan algorithms cluster spacepoints
- Attach clusters to neutrino keypoints to form interaction candidates

3) Particle classification with LArPID CNN:

- Inputs: 2D pixels associated with 3D cluster and full context image
- Outputs: particle label, primary or secondary classification, and purity and completeness reconstruction quality metrics

92% of clusters are assigned the correct particle label

		m			
	True e^{\perp}	True γ	True μ^{\perp}	True π^{\perp}	True p
Fraction classified as e^{\pm}	84.5%	5.2%	0.1%	0.5%	0%
Fraction classified as γ	12.7%	94.3%	0.2%	0.2%	0.1%
Fraction classified as μ^{\pm}	0.4%	0.1%	93.9%	11.5%	0.3%
Fraction classified as π^{\pm}	2.3%	0.3%	5.6%	86.5%	1.6%
Fraction classified as p	0.1%	0.1%	0.2%	1.4%	97.9%

LArPID Particle Classification Performance

In simulation, 68% of reconstructed neutrino vertices are within 9mm (3 wires) of true interaction and clusters are reconstructed with high purity and completeness

Inclusive CC Event Selections with CNN-Based Reconstruction

Method:

Predicted Inclusive Selection Results with

Inclusive CC nue Selection MC Predictions

1) Take neutrino interaction candidates from LArMatch and clustering reco 2) Check LArPID outputs of attached tracks and showers to:

- Find events with primary electron (for inclusive CC v_{a} selection)
- Find events with primary muon (for inclusive CC v_{μ} selection)

Comparison to Wire-Cell Reconstruction [1]

	DL Reco	Wire Cell
CC ν_e Efficiency	57%	46%
CC ν_e Purity	91%	82%
CC ν_{μ} Efficiency	68%	68%
CC ν_{μ} Purity	96%	92%

Data Validation:

• Hand scan results of selected CC v_{e} events are consistent with efficiency and purity predictions and predicted improvements over Wire-Cell selection [2] • High p-values for χ^2 data/MC consistency tests of kinematic distributions

An RNN Neutrino Energy Estimator in MicroBooNE's Wire-Cell Reconstruction

RNN takes reconstructed particles as input

Results are consistent with	MicroBooNE Simulation ($ u_{\mu}$ CC FC)		
(high p-values from χ^2 tests)	RNN	Ŋ	Traditional
MicroBooNE (Mean -0.04	1	Mean -0.13

[1] Abratenko, P., et al. (MicroBooNE Collaboration). Physical Review D 105.112005 (2022)

