Speaker
Description
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector located 700 m underground at 52.5 km from two Nuclear Power Plants (NPP) in China. The primary physics goal of JUNO is to determine the neutrino mass ordering by measuring the electron antineutrino ($\bar{\nu}_e$) oscillated spectrum with excellent energy resolution. This requires a very accurate knowledge of the non-oscillated reactor $\bar{\nu}_e$ spectrum. The Taishan Antineutrino Observatory (TAO) is a satellite experiment consisting of a ton-level liquid scintillator detector that will measure the $\bar{\nu}_e$ spectrum with unprecedented energy resolution at 44 m from the core of a reactor at the Taishan NPP, providing a reference spectrum for JUNO.
This poster presents the analysis tools that we are developing to simulate the evolution of the reactor $\bar{\nu}_e$ spectrum as a function of fuel burnup and to implement a $\bar{\nu}_e$ summation spectrum, based on most up-to-date nuclear data, to be used for future benchmark analyses of TAO data.
Poster prize | No |
---|---|
Given name | Davide |
Surname | Chiesa |
First affiliation | Università di Milano - Bicocca |
Second affiliation | Istituto Nazionale di Fisica Nucleare |
Institutional email | davide.chiesa@mib.infn.it |
Gender | Male |