

Analysis of the evolution of the reactor antineutrino spectrum in the framework of the JUNO-TAO experiment

Presenter: Davide Chiesa^{1,2} (<u>davide.chiesa@mib.infn.it</u>)

Co-authors: Andrea Barresi^{1,2}, Matteo Borghesi^{1,2}, Antonio Cammi^{2,3}, Lorenzo Loi^{2,3}, Massimiliano Nastasi^{1,2}, Ezio Previtali^{1,2}, Monica Sisti²

University of Milano-Bicocca, Department of Physics, Piazza della Scienza 3, I-20126, Milan, Italy ² INFN, Section of Milano Bicocca, Piazza della Scienza 3, I-20126, Milan, Italy ³ Politecnico di Milano, Department of Energy, Via la Masa, 34, I-20156, Milan, Italy

This poster presents the analysis tools that we are developing to simulate the evolution of the reactor $\overline{v_e}$ spectrum as a function of fuel burnup and to implement a summation \bar{v}_e spectrum, based on most up-to-date nuclear data, to be used for future benchmark analyses of TAO data.

JUNO (JIANGMEN UNDERGROUND NEUTRINO OBSERVATORY)

TAO (TAISHAN NEUTRINO OBSERVATORY)

- Primary physics goal: determine the neutrino mass ordering by measuring the electron antineutrino $(\overline{\nu_e})$ oscillations.
- > 20 kton liquid scintillator detector surrounded by 17612 Large PMTs and 25600 Small PMTs.
- \succ Excellent energy resolution: $3\%/\sqrt{E}$ (MeV).
- \succ 700 m underground lab in southern China.
- $\geq \sim 53 \text{ km}$ from two Nuclear Power Plants.
- \succ Inverse Beta Decay (IBD) rate: 50 events/day.

Dava Bay

- \succ TAO is a satellite experiment that will measure the $\overline{v_e}$ spectrum at 44 m from a reactor core at the Taishan NPP, to provide a reference spectrum for JUNO.
- Taishan NPP comprises 2 Pressurized Water Reactors (PWR), EPR type, each with 4.6 GW thermal power.

Taishan Nuclear Power Plant (NPP), Units 1 & 2, Guangdong, China

- \succ TAO will measure the reactor $\overline{\nu_e}$ spectrum with unprecedented energy resolution: $< 2\%/\sqrt{E(MeV)}$, \rightarrow experimental benchmark for nuclear databases.
- Gd-doped liquid scintillator (1-ton fiducial volume).
- \succ SiPMs of > 50% photon detection efficiency and near complete geometrical coverage, operated at -50 °C to lower the dark noise.
- IBD rate: 2000 events/day.

SUMMATION METHOD FOR REACTOR $\overline{\nu}_{e}$ SPECTRUM MODELLING

 $S(E_{\nu},t) = \sum_{i} f_{i}(t)S_{i}(E_{\nu},t) = \sum_{i} f_{i}(t)\frac{\sum_{j} A_{i,j}(t) S_{j}(E_{\nu})}{\sum_{i} A_{i,j}(t)}$

i labels the 4 main fissile nuclides in a PWR: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

REACTOR FUEL BURNUP ANALYSIS

- Reactor simulations to predict fission fractions $f_i(t)$ and activities of fission products $A_{i,i}(t)$
- MC simulations of neutronics and calculation

THE LAZYSPECTRA TOOL

- \succ Goal: build a summation $\overline{\nu}_e$ spectrum to be used for the analysis of TAO data (e.g. fine structures).
- \succ Up to date with the latest nuclear data.
- State-of-the-art tool for calculating the \bar{v}_e spectra $S_i(E_v)$ [1].
- \succ Philosophy: don't reinvent the wheel.

- of fuel burnup using the Serpent (v2) code.
- > Benchmark analysis with experimental data of fuel burnup available in literature for a PWR (Takahama-3) \rightarrow arXiv:2311.12540

Building the reactor $\bar{\nu}_e$ spectrum at equilibrium with LazySpectra

 \succ Most fission products have relatively short half lives and quickly reach the equilibrium condition (production rate = decay rate).

$$\begin{array}{ccc} A_{i,j} \propto y_{i,j} & \longrightarrow & S(E_{\nu},t) \propto \sum_{i} f_{i}(t) \sum_{j} y_{i,j} S_{j}(E_{\nu}) & S_{i}(E_{\nu},t) \ \text{spectra ratio} \\ & & & & \\ & & &$$

PRELIMINARY RESULTS AND NEXT STEPS

 \succ We compare our summation \bar{v}_e spectra (multiplied by IBD cross section) with experimental data from Daya Bay.

In the next future we will focus on:

 \succ assessment of uncertainties and impact of missing β^- decay nuclear data;

 \succ full core analysis of EPR reactors to analyze fission fraction uncertainties.

(*) ACKNOWLEDGEMENTS

We thank A. Sonzogni (Brookhaven National Laboratory) for providing us TAGS-corrected Nuclear Data Files

REFERENCES

[1] X. Mougeot, Appl. Radiat. Isot. 201, 111018 (2023) [2] L. Périssé, et al. Phys. Rev. C 108, 055501 (2023) [3] C. Zhang, *et al*. <u>PPNP 136, 104106 (2024)</u>