18–26 Feb 2021
Online
Europe/Rome timezone

Analytical solutions to renormalization-group equations of neutrino oscillation parameters in matter

23 Feb 2021, 11:40
5m
Room 3 (https://unipd.link/NeuTel-ParallelRoom3)

Room 3

https://unipd.link/NeuTel-ParallelRoom3

Parallel Flash talk Neutrino Theory and Cosmology Non Standard Interactions

Speaker

Dr Xin Wang (Institute of High Energy Physics, CAS)

Description

The evolution of effective neutrino masses and mixing parameters in the ordinary matter can be characterized by a complete set of differential equations with respect to the matter parameter $a \equiv 2\sqrt{2}G^{}_{\rm F}N^{}_eE$, in analogy with the renormalization-group equations (RGEs) for running parameters. With some reasonable approximations, we find analytical solutions to the above differential equations, and obtain simple and compact formulas of all the effective oscillation parameters. Interestingly, the ratio of effective Jarlskog invariant $\widetilde{\cal J}$ in matter to its counterpart ${\cal J}$ in vacuum can be well described by $\widetilde{\cal J}/{\cal J} \approx 1/(\widehat{C}^{}_{12} \widehat{C}^{}_{13})$, where $\widehat{C}^{}_{12} \equiv \sqrt{1 - 2 \widehat{A}^{}_* \cos 2\theta^{}_{12} + \widehat{A}^2_*}$ with $\widehat{A}^{}_* \equiv a\cos^2 \theta^{}_{13}/\Delta^{}_{21}$ and $\widehat{C}^{}_{13} \equiv \sqrt{1 - 2 A^{}_{\rm c} \cos 2\theta^{}_{13} + A^2_{\rm c}}$ with $A^{}_{\rm c} \equiv a/\Delta^{}_{\rm c}$.

Primary author

Dr Xin Wang (Institute of High Energy Physics, CAS)

Co-author

Prof. Shun Zhou (Institute of High Energy Physics, Chinese Academy of Sciences)

Presentation materials