Speaker
Description
We show the properties of the gravitational wave signal emitted after the merger of a binary neutron star system. We show that the post-merger phase can be subdivided into three phases: an early post-merger phase (where the quadrupole mode and a few subdominant features are active), the intermediate post-merger phase (where only the quadrupole mode is active) and, when remnant survives for more than a 60ms before collapsing to a Black Hole, the late post-merger phase (where convective instabilities trigger inertial modes).
Moreover, we show how to perform numerical simulations of Binary Neutron Star Mergers using the Einstein Toolkit. We discuss the motivation for going to high-resolution and the computational requirement needed to reach the required resolution a the numerical performance on the Einstein Toolkit public code. We present vectorization and scaling tests on the code on SkyLake and Knight’s Landing processors to assess its capability of making use of a large amount of parallel computing power. Our tests are run on the full infrastructure, evolving both the space-time metric variable and matter.