Conveners
Session XXII (Parallel Session)
- Kathrin Wimmer (The University of Tokyo)
Deviations from a smooth trend in the separation energy extracted from atomic masses are typically associated with a sudden onset of deformation or the rise of a magic number. This information is limited to ground and isomeric states. A new way to investigate shell effects at high excitation energies is presented here and inferred from empirical drops in nuclear polarizabilities. Deviations...
Indication of triaxiality in $^{78}$Ge has recently been presented from a low-energy sequence of strictly $\Delta J=1$ transitions [1]. Neutron-rich Ge and Se isotopes were studied using the Gammasphere Ge-detector array at ANL. Beams of $^{76}$Ge and $^{82}$Se were incident upon thick $^{238}$U and $^{208}$Pb targets in deep-inelastic reactions. New data in $^{80,82}$Se will be presented to...
An interesting aspect of nuclear structure is the shell evolution for isotopes with extreme isospin values. Experimental evidence show the presence of a sub-shell closure at N = 32 for 52Ca, 54Ti and 56Cr. Mass measurements on 52,53K suggest that this sub-shell closure is maintained below Z=20. For the case of the 48Ar, low lying 2+, 4+ and the second 2+ states, as well as the B(E2)↑ value...
The tin nuclei, representing the longest isotopic chain between two experimentally accessible doubly-magic nuclei, provide a unique opportunity for systematic studies of the evolution of basic nuclear properties when going from very neutron-deficient to very neutron-rich species. A little over a decade ago, they were considered a paradigm of pairing dominance: the excitation energies of the...