Conveners
Session XI (Parallel Session)
- Michael Bentley (University of York)
Experimental studies of nuclei far from stability provide guidance for further development of nuclear models. Simple systems in the proximity of the doubly-magic shell closures are the best cases for testing the predictive power of shell-model calculations. In this context, understanding of the nuclear structure in the closest proximity of the doubly-magic $^{132}$Sn is essential before making...
The single-particle level structure is essential for the stability and decay properties of the heaviest nuclei. However, the prediction of low-lying single-particle states for heaviest elements remains a very challenging task nowadays (see for example [1 - 3]). Experimental data are scarce in this region and any new data serves as an important anchor for theoretical predictions and a...
Nuclei with a large N/Z ratio in this region are of great interest to test nuclear models and provide information about single particle states. During the last two decades there has been a substantial effort directed to gathering information about the region around 132Sn[1-3], the most exotic doubly-magic nucleus presently at reach. 132Sn is itself a very interesting case [4]. The simplest...
The breaking of symmetries in quantum systems is one of the key issues in nuclear physics. In particular, the spontaneous symmetry breaking in rotating nuclei leads to exotic collective modes, like the chiral motion, which is an unique fingerprint of triaxiality in nuclei and have been intensively studied in recent years. We are currently involved in the study of Lanthanide nuclei. New results...