Conveners
Session VIII (Parallel Session)
- Dariusz Seweryniak, (Argonne National Laboratory, USA)
It is well known that nucleons are arranged in specific shells resulting in greater stability, analogous to the electron shells in the atom and that this shell structure was expected to be very robust in the whole nuclear chart. However, with advance experimental and theoretical works during the last two decays, we are aware that the shell structure changes when moving far away from stability...
Previous investigations of neutron-rich titanium isotopes indicate the development of a subshell closure at $N=32$. However, shell model calculations could not explain this behaviour so far: the excitation energies of the lowest excited Yrast states in these titanium isotopes are reproduced, but not, for example, the trend of the $B(E2;2_1^+\rightarrow 0_\mathrm{gs}^+)$ values as a function of...
Nuclei in the vicinity of $^{78}$Ni have recently been in focus of many experimental and theoretical investigations. In particular, the neutron-rich Zn isotopes, only two protons above the Ni isotopic chain, are ideally suited to study the evolution of the Z = 28 proton shell gap, and the stability of the N = 50 neutron shell gap. In the last decade, several experiments were performed to study...