Speaker
Description
We show that counting the number of collisions (re-sampled bitstrings) when measuring a random quantum circuit provides a practical benchmark for the quality of a quantum computer and a quantitative noise characterization method. We analytically estimate the difference in the expected number of collisions when sampling bitstrings from a pure random state and when sampling from the classical uniform distribution. We show that this quantity, if properly normalized, can be used as a "collision anomaly" benchmark or as a "collision volume" test which is similar to the well-known quantum volume test, with advantages (no classical computing cost) and disadvantages (high sampling cost). We also propose to count the number of cross-collisions between two independent quantum computers running the same random circuit in order to obtain a cross-validation test of the two devices.
A. Mari, arXiv:2312.04222 (2023).