In this talk I will discuss recent developments in the study of Wilson loop correlators in four-dimensional \mathcal{N} = 2 superconformal gauge theories. Using supersymmetric localization, it is possible to map the computation of these observables to an interacting matrix model and obtain expressions for these correlators in terms of Fredholm determinants of a Bessel operator, that are valid...

Since the first discovery of gravitational waves resulting from a binary black hole coalescence, the study of the post-merger phase, known as ringdown, has proven to be one of the most promising tools for testing gravity and exploring fascinating extensions of general relativity. In this talk I will discuss one of these extensions, called Einstein-Maxwell-scalar theory, where a scalar field is...

We approach the problem of open-closed duality through the complete perspective of string field theory (SFT) and we provide a description of the backreaction of a large N stack of D-branes as a new closed string background without D-branes. To achieve this, we first of all give a new convenient formulation of open-closed SFT based on a single open-closed nilpotent structure which captures the...

I will discuss the computation of correlators and observable quantities, in particular OPE coefficients, in Argyres-Douglas theories, that are 4-dimensional N = 2 superconformal field theories, intrinsically strongly coupled and without a Lagrangian description. After a quick presentation on these theories and the motivation of this study, I will recall some results for extremal correlators...