Conveners
Squeezing, Topology, Quantum Information: Ideas for beyond 3G Part 2
- Shtefan Danilishin (University of Glasgow)
- Yanbei Chen
Description
Ideas for future developments, optical topologies, quantum sensing and processing
Future Gravitational wave detectors will be upgraded to silicon optics and suspensions to mitigate thermal noise. Therefore the gravitational wave interferometer will operate at longer wavelengths to reduce optical absorption in silicon. At ANU we are operating a squeezed light system at a wavelength of 1984 nm designed to be suitable for injection into future GW detectors. We produce 11 dB of...
In interferometric gravitational wave detectors, quantum radiation pressure noise limits their sensitivity at low frequencies. Speed meters are one of the solutions to reduce the back-action noise. Recently, a new type of design utilizing polarization of light, the polarization circulation speed meter, has been proposed. Since this design requires only a slight modification to the conventional...
Opto-mechanical sensors such as gravitational wave detectors are limited by the standard quantum limit (SQL). One way to surpass the SQL is coherent quantum-noise cancellation (CQNC). In CQNC, the quantum back-action noise from the opto-mechanical system is cancelled by an effective negative-mass oscillator (ENMO). In our approach to realising CQNC, the positive-mass oscillator and the...
During the scientific run O4, gravitational-wave detectors will attain broadband Quantum Noise reduction through Frequency-Dependent Squeezing (FDS), by coupling a 300m-long Filter Cavity (FC) to the main interferometer. This required additional infrastructure work and maintenance, and will inevitably add optical losses (~1 ppm/m).
In 3rd generation detectors, km-long FCs will be needed, due...
Optical squeezing is a well-known technique to reduce quantum noise. This technique has been implemented in actual gravitational wave detectors such as LIGO or Virgo. On the other hand, an opto-mechanical method using an optical spring generated by slightly displacing the signal recycling mirror from its resonant position, i.e. detuning, has also been investigated to increase the sensitivity...