Speaker
Description
Since the first detection of gravitational waves, new data analysis algorithms and methods have emerged. However, to be developed and tested, these new methods require simulated datasets to compensate for the lack of large numbers of real events currently available. Furthermore, upgrades of existing detectors and planning for next-generation instruments, like the Einstein Telescope or Cosmic Explorer, require detailed simulations of observing scenarios.
The Gravitational Wave Sky Simulator (GWSkysim) is a fast simulator of gravitational wave sources. The package, written in Python, offers several types of astrophysical and transient noise sources which can be defined via population parameters and can be embedded in stationary or colored noise.
Both current and future-generation interferometers can be selected in any network configuration. For each of them, a set of default sensitivity curves can be chosen, and the program uses them to reproduce realistic noise in which the simulated signals can be embedded to resemble the most realistic dataset possible.
GWSkysim combines the capability of simulating gravitational wave sources with a customizable and user-friendly interface, with the goal of easily providing simulations for various purposes related to gravitational waves.