Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites.

5 Oct 2022, 12:30
30m

Speaker

Dr Samuele Ronchini (Istituto Nazionale di Fisica Nucleare)

Description

The Einstein Telescope (ET) is an ambitious project for the future of multi-messenger astrophysics and the optimisation of the synergy with astronomical facilities is a cardinal point which needs to be addressed. In order to detect the counterparts of binary neutron star (BNS) mergers at high redshift, the observation of high-energy signals will play a crucial role. I will explore the perspectives of ET operating as single observatory and in a network of next generation gravitational-wave observatories (such as Cosmic Explorer), in synergy with future gamma-ray and X-ray satellites. I will show the predictions of the high-energy emission of BNS mergers and its detectability in a theoretical framework based on a universal jet structure and able to reproduce the properties of the current sample of short GRBs. The joint gravitational-wave and high-energy detection rate is estimated for both the prompt and afterglow emissions, testing several combinations of instruments and with the aim of determining the best observational strategies. I will emphasise the crucial role of future wide field X-ray missions also for the detection of the fainter emission outside the jet core, which will allow us to probe the yet unexplored population of low-luminosity short GRBs in the nearby Universe, as well as to unveil the nature of the jet structure and the connections with the progenitor properties.

Primary author

Dr Samuele Ronchini (Istituto Nazionale di Fisica Nucleare)

Presentation materials