Several new findings in the four, five and six quark systems have catalysed new interest in the field of multiquark states. Very significant progress has recently been made in the 6q sector, on both the theoretical and experimental fronts. The first theoretical work on di-baryonic states can be dated back to Dyson and Xoung (1964) when they predicted an existence of six non-strange dibaryons...
We study the two step sequential one pion production mechanism, np(I=0)→π−pp, followed by the fusion reaction pp→π+d, in order to describe the np→π+π−d reaction with π+π− in I=0, where a narrow peak, so far identified with a "d(2380)" dibaryon, has been observed. We find that the second step pp→π+d is driven by a triangle singularity that determines the position of the peak of the reaction and...
Understanding the nucleon-nucleon and the hyperon-nucleon interaction is essential in obtaining a comprehensive picture of the strong interaction. The former has been extensively studied in the past decades, whereas details of the interaction involving strangeness degrees of freedom is very sparse. This is partly attributed to difficulties performing high-precision scattering experiments with...
We determine the existence and much debated parameters of the f0(1300) light scalar resonance. We establish the existence of its associated pole in the complex plane, determining its parameters by means of analytic continuation method on a model-independent dispersively constrained analysis of ππ→ππ and ππ→K¯K data. We show how this pole appears consistently using Forward Dispersion Relations...
The study of baryonic excited states provides fundamental information on the internal structure of the nucleon and on the degrees of freedom that are relevant for QCD at low energies. N are composite states and are sensitive to details of the how quarks are confined.
One of the still open problems in the description of the baryon spectrum by Quark Models or lattice QCD is the missing...