Binary systems as dynamical detectors of gravitational waves

Speaker

Alexander Jenkins (King's College London)

Description

The passage of gravitational waves (GWs) through a binary perturbs the trajectories of the two bodies, potentially causing observable changes to their orbital parameters. In the presence of a stochastic GW background (SGWB) these changes accumulate over time, causing the binary orbit to execute a random walk through parameter space. In this talk I will present a powerful new formalism for calculating the full statistical evolution of a generic binary system in the presence of a SGWB, capturing all six of the binary's orbital parameters. I will show how this formalism can be applied to laser ranging and pulsar timing observations to set novel upper limits on the SGWB spectrum in a frequency band which is inaccessible to all other GW experiments. As an example application of these searches, I examine GWs from cosmological first-order phase transitions (FOPTs), and show that binary resonance can constrain regions of the FOPT parameter space which no other experiment can access.

Primary author

Alexander Jenkins (King's College London)

Presentation materials