Conveners
Cross Sections: (Room 1)
- Fabio Pupilli (PD)
- Filippo Varanini (PD)
Cross Sections: (Room 1)
- Andrea Longhin (PD)
- Christian Farnese (PD)
Cross Sections: (Room 1)
- Chiara Sirignano (PD)
- Christian Farnese (PD)
FASERnu is a new experiment to measure interaction cross-sections of neutrinos that are produced in proton-proton collisions at the LHC. The detector will be installed 480 m downstream from the interaction point of the ATLAS experiment during 2021, aiming to collect physics data during Run 3 of the LHC. About 10,000 charged-current neutrino interactions with mean energies of ~1 TeV are...
Neutrino interactions with nuclei are the main experimental tool used to study neutrinos in many different contexts, and systematic uncertainties arising from neutrino-nucleus interactions, especially those related to nuclear effects, can be a limiting factor in their energy reconstruction. For the CC1pi interaction, which is dominated by resonant production, physics of the initial state...
The detection of neutrinos through Coherent Elastic Neutrino Nucleus Scattering (CE$\nu$NS) process opens a new window to study the fundamental properties of this elusive particle and to probe physics beyond the Standard Model. The CONUS experiment – operational since April 2018 – is located at 17$\,$m from the 3.9$\,$GW$_{\text{th}}$ core of the nuclear power plant Brokdorf (Germany) and aims...
Hadron production measurements are crucial for helping long-baseline
neutrino oscillation experiments constrain their beam flux
uncertainties. These uncertainties represent a leading systematic
uncertainty on measured neutrino oscillation parameters. At the
NA61/SHINE experiment, interactions of charged hadrons with various
materials relevant to neutrino production are recorded and...
The goal of the presented analysis is the measurement of the muon antineutrino single $\pi^{-}$ production interactions on CH ($\bar\nu_{\mu} + N \rightarrow \mu^{+} + \pi^{-} + X$) in the T2K off-axis near detector. This interaction mode is the second largest at T2K energies and studies are ongoing to include such events in T2K oscillation analysis which for $\bar\nu_{\mu}$ beam mode is...
Electron-neutrino appearance is a crucial channel for searches of sterile neutrinos in short-baseline experiments and measurements of Charge-Parity (CP) violation in long-baseline oscillation experiments. The precise knowledge of the electron neutrino cross section will, therefore, play a key role in reducing the uncertainties of these future experiments. There are only a handful of electron...
Neutrino interactions off correlated nucleon pairs (2p2h interactions) are thought to contribute significantly to events detected by long baseline neutrino oscillation experiments. These 2p2h processes are challenging to model and the corresponding uncertainties can be responsible for some of the leading systematic uncertainties in measurements of neutrino oscillation parameters. To help...
The MicroBooNE detector has an active mass of 85 tons of liquid argon and is located along the Booster Neutrino Beam (BNB) at Fermilab. It has a rich physics program including the search for a low-energy excess observed at MiniBooNE and measurements of neutrino-Argon interaction cross sections. In this talk, we present a procedure, based on the Wiener-SVD unfolding method, to extract the...
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton Gd-doped water Cherenkov detector installed in the Booster Neutrino Beam (BNB) at Fermilab. The primary physics goal of ANNIE is to measure the neutron yield from νμ interactions as a function of Q2 in order to constrain neutrino-nucleus interaction theoretical models. Identifying and counting final state neutrons...
MINERvA is a neutrino scattering experiment at Fermilab that utilizes the intense neutrino beam from the NuMI beamline and a finely segmented scintillator-based tracking detector to measure neutrino cross sections and study nuclear effects with various nuclear targets. MINERvA has results using both its low- energy and medium energy data sets. These results cover both exclusive and inclusive...
MicroBooNE is a liquid argon time projection chamber that operates in the Booster Neutrino Beam at Fermilab. The detector provides high-resolution imaging of neutrino interactions with a low threshold and full angular coverage. Thanks to a high expected event rate and several years of continuous operation, the MicroBooNE collaboration has obtained the world's largest dataset of neutrino-argon...