Conveners
Application to life sciences and other societal challenges - Poster session
- Mara Bruzzi (Istituto Nazionale di Fisica Nucleare)
- Nicola D'Ascenzo (University of Science and Technology of China, Hefei/Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S.)
Currently, cancer is one of the most frequent death causes in the world and
radiation therapy is used in approximately 50% of patients diagnosed with
cancer. This implies the need of the treatment to be as efficient and safe
as possible. In this work, a novel reconfigurable Dose-3D detector intended for
a full spatial therapeutic dose reconstruction to improve radiotherapy
treatment...
The actual and next decade will be characterized by an exponential increase in the exploration of the Beyond Low Earth Orbit space(BLEO). Moreover, the firsts tentative to create structures that will enable a permanent human presence in the BLEO are forecast. In this context, a detailed space radiation field characterization will be crucial to optimize radioprotection strategies (e.g.,...
Currently PSI delivers the most intense continuous muon beam in the world with up to few 10^8 μ+/s and aims at keeping its leadership upgrading its beamlines within the HIMB project to reach intensities up to 10^10 μ+/s, with a huge impact for low-energy, high-precision muon based searches.
Here we present two novel beam monitors designed for the current PSI beams and that will be upgraded...
A 32$\times$32 Bicron 1 mm$^2$ polystyrene scintillating fibre-based beam hodoscope, with an entrance window of 6$\times$6 cm$^2$, has been designed and characterised for monitoring low-energy charged particle beams. The hodoscope has been designed to fit into the 60 Mev/c negative muon beam at Port 1 of the RIKEN-RAL muon facility (UK) as a beam monitor for the FAMU experiment. Each fibre is...
This work presents a systematic study of multiple counts detection in a Pixirad/Pixie-II detection system. To characterize the dependence of multiple counts from the energy and discriminator threshold, monochromatic photons have been employed. Measurements have been performed at the SYRMEP (SYnchrotron Radiation for Medical Physics) beamline of Elettra synchrotron, Trieste. For each energy,...
Radiation detection in the environment is of great importance and suitable instruments are highly needed. One possibility for the detection of gamma-ray sources is a Compton gamma camera (CGC) which uses electronic collimation based on the kinematics of the Compton scattering. Most realizations comprise two separate detector planes, a scatterer and an absorber, with some recent attempts to...
The application of safety margins in treatment planning to account for possible morphological variations prevent from profit from the particle therapy intrinsic precision. Thus, the development of an in vivo verification system for particle therapy treatments is considered a crucial step forward in improving the clinical outcome, allowing to experimentally check the planned and delivered dose...
The positron emission tomography (PET) is an effective functional imaging technique especially for cancer diagnosis. Its performance is strictly connected to the ability to detect and reconstruct photons emitted by the positron - electron annihilation. Its sensitivity is enhanced when time information are included (time-of-flight (ToF) PET). The measure of the detection time difference...
This contribution deals with the development, production and test, within the ANET project, of a new concept of compact neutron collimator, for neutron radiography and tomography. The novel multi-channel collimator, thanks to extensive experimental campaigns, has proved to deliver highly collimated neutron beams within very limited distances, outperforming other types of neutron collimators....
The Cosmic Ray Cube is a portable tracking device conceived for outreach activities allowing a direct scientific experience for secondary school students. In the context of the PTOLEMY project, the detector was used to measure the differential muon flux inside the bunker of Monte Soratte, a suitable location at about 50 km north of Rome (Italy). Its simple operation was crucial to finalise the...
Anatomical changes occurring during proton therapy treatment are considered a relevant source of uncertainty in delivered dose. The INSIDE in-beam Positron Emission Tomography scanner, installed at the National Oncological Center of Hadrontherapy (CNAO), performs in-vivo range monitoring to obtain information about morphological changes in the irradiated tissue. Our purpose is to assess the...
The use of muon tomography in geoscience, and in glacier monitoring, is being increasingly used, and showed how these detectors can provide insights on relevant topics as the time evolution and dynamics of glacier melting. The latest experiments results present in literature make use of detectors to be placed in tunnels beneath the target of the study. This approach limits the number of...
The ORIGIN project (Optical Fiber Dose Imaging for Adaptive Brachytherapy), supported by the European Commission within the Horizon 2020 framework program, targets the production and qualification of a real-time radiation dose imaging and source localization system for both Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy treatments, namely radiotherapy based on the use of...
We compare the performance of gamma-ray detectors based on monolithic BGO crystals versus LYSO ones, using a novel neural-network event characterization algorithm. LYSO represents the gold standard in applications such as Positron Emission Tomography and is considered a key component for time-of-flight (ToF) photon detection. On the contrary, BGO has been used so far only for non-ToF...
OLD
Recent developments on scintillators together with fast digital signal processing, allowed the implementation of techniques that facilitate their use in applications that required excellent Pulse Shape Discrimination and FOM such as the identification of Special Nuclear Material through both combined gammas counting / spectrometry and neutron counting with time stamp correlated...
Resistive plate chambers (RPCs) with electrodes of high-pressure phenolic laminate (HPL) and small gas gap widths down to 1 mm provide large area tracking at relatively low cost in combination with high rate capability and fast response with excellent time resolution of better than 500 ps. These chambers offer a wide range of applications. In particular, they are perfectly suited for...
Proton therapy offers highly localised dose distribution and better healthy tissue sparing over conventional radiotherapy. Crucial in optimising patient safety is the proton range: this is the largest source of uncertainty in proton therapy and prevents full advantage being taken of the superior dose conformality. In the clinic, daily Quality Assurance (QA) is performed each morning before...
The Low-Temperature Cofired Ceramic (LTCC) technology is known as a highly suitable material for the production of electronic microstructures in 3D. In particular, the material is characterized by good mechanical and electrical properties, a wide range of operating temperatures, high thermal conductivity and low outgassing. Additionally, the high radiation resistance of such materials has been...
In the uRANIA project (μ-RWELL Advanced Neutron Imaging Apparatus) the μ-RWELL technology is applied to neutrons detection, a key point for homeland security. The device is a compact resistive detector, composed of two elements: the micro-RWELL_PCB, incorporating the amplification stage and the readout plane, and the cathode. This latter works as well as main element for thermal neutron...
Several hereditary disesases due to retina degeneration affect
one over ~4000 persons resulting in total or partial blindness.
These disesases cannot be cured and the only chance of improving
the quality of life in the patients is a visual prostheses replacing
the damaged layers in the retina.
Some prostheses prototypes already exist and have been implanted.
Nevetherless the improvements...