22–28 May 2022
La Biodola - Isola d'Elba (Italy)
Europe/Rome timezone
submission of the proceedings for the PM2021 has been postponed to July 31, 2022

Novel imaging technique for thermal neutrons using a fast optical camera

23 May 2022, 15:30
3h 20m

Speaker

Tianqi Gao (University of Manchester)

Description

A novel imaging technique for thermal neutrons using a fast-optical camera is presented. Thermal neutrons are reacted with Lithium-6 to produce a pair of 2.73 MeV tritium and 2.05 MeV alpha particles, which in turn interact in a thin layer of LYSO crystal scintillator to produce a localized flash of light. These photons are directed by a pair of lenses to a micro-channel plate intensifier, the optical camera, TPX3CAM is connected to the intensifier output. The setup is shown in figure 1 (attached).
The results from the camera are reconstructed through a custom algorithm. Each reconstructed neutron event is made up of several sub-clusters, each cluster represents a group of photons, which were produced by the photon multiplier from a single photon input. A neutron hit is calculated to produce 3-6 photons at the intensifier input. The background of this experiment consists of low energy beta particles and x-rays, which produces single photons. Figure 2 (attached) shows 3 groups of photons, which are relatively close to each other both spatially and temporally, this event was is determined as the result of a neutron hit.
In conclusion, this new optical neutron imaging technique allows remote and long-distance detection from the radiation source also magnifies the field of view of a detector by using an appropriate set of focusing lenses.

Primary authors

Dr Adam Roberts (University of Liverpool) Prof. Andrei Nomerotski (Brookhaven National Laboratory) Prof. Cinzia Da Via (University of Manchester and Stony Brook University) Dr Gabriele D’Amen (Brookhaven National Laboratory) Dr Peter Svihra (University of Manchester) Dr Sergey Burdin (University of Liverpool) Tianqi Gao (University of Manchester)

Presentation materials