The development of thin-film coatings with lower mechanical losses is of critical importance for the performance of future generations of interferometric gravitational-wave detectors. Significant experimental effort has led to improvements during these years and currently the most advanced technology is the one of amorphous coatings. Yet, there is still a lack of fundamental understanding of...
Thermal noise associated with the mechanical loss of highly reflective mirror coatings is a critical limiting factor to the sensitivity of interferometric gravitational-wave detectors. Several alternative coating materials have been shown to have low mechanical loss, but however, due to their high optical absorption, cannot be implemented in upgrades to these detectors.
New multimaterial...
We study the dissipation φ of a silicon µ-cantilever coated with 300nm of Tantala. From the thermal noise spectra, a fit of 10 resonances for flexion modes, and 6 resonances for torsion modes can be performed, giving access to φ from 2 kHz to 600 kHz. Dissipation presents a weak maximum around 50 K in temperature, and is a slowly increasing function of frequency (power law $f^α$ with α~0.06)....
Fluorides like MgF2 and AlF3 have the lowest refractive index among the known coating materials; using them in a high-reflection (HR) Bragg mirror instead of SiO2, one could reduce the total HR coating thickness and hence its coating thermal noise.
A succession of annealing treatments at different temperatures (but with the same duration) were performed on a silica disk coated with MgF2. The...