3–8 Jun 2019
Bari
Europe/Rome timezone
WIN2019. The 27th International Workshop on Weak Interactions and Neutrinos.

Status and prospects of charged lepton flavor violation searches with the MEG-II experiment

7 Jun 2019, 15:08
30m
Sala Federico II (Bari)

Sala Federico II

Bari

Oral Flavor and Precision Physics Flavor and Precision Physics

Speaker

Francesco Renga (ROMA1)

Description

The MEG experiment took data at the Paul Scherrer Institute in the years 2009-2013 and published the most stringent limit on the charged lepton flavor violating decay $\mu \rightarrow e\gamma$: $BR(\mu \rightarrow e\gamma) <4.2 \times 10^{-13}$ @90% C.L.
The MEG detector has been upgraded in order to reach a sensitivity of $5 \times 10^{-14}$, which corresponds to an improvement of one order of magnitude.
The basic idea of MEG-II is to achieve the highest possible sensitivity by making the maximum use ($7 \times 10^{7}$ muons/s) of the available muon intensity at PSI with an improved detector, since MEG ran at a reduced intensity ($3 \times 10^{7}$ muons/s) in order to keep the background at a manageable level.
The key features of the MEG-II are the increase of the rate capability of all detectors to enable running at the intensity frontier, and to increase the resolutions while maintaining the same detector concept.
A new mass, single volume, high granularity tracker, together with a thinner muon stopping target, leads to better spatial, angular and energy positron resolution.
A new highly segmented timing counter improves positron timing capabilities. The detector acceptance for positrons is increased by more than a factor 2 by diminishing the material between these two detectors. The liquid Xenon calorimeter has new smaller photosensors (VUV-sensitive SiPM) that replace current phototubes and improve in particular photon energy resolution. The results of the 2018 pre-engineering run, the first with all the sub-detectors, and the current schedule will presented.

Collaboration name

MEGII

Presentation materials