

Lepton Flavor Violation Searches with the MEG-II Experiment

Francesco Renga *INFN Roma for the MEG II Collaboration*

1

– A. Schöning

Lepton Flavor Conservation in the Standard Model

- Lepton Flavor conservation in the Standard Model is an accidental symmetry, arising from the particle content of the model
- Generally violated in most of New Physics models

"Charged Lepton Flavor Violation (cLFV) is THE signature for New Physics"

cLFV and direct NP searches at the LHC

- cLFV rates strongly depend on the details of the flavor structure of new physics:
 - even within the same model, cLFV constraints can be much stronger or much weaker than LHC constraints, depending on the flavor structure that is chosen
 - LHC searches still leave a lot of place for cLFV

L. Calibbi et al., Eur. Phys. J. C72 (2012) 1863

STRONG COMPLEMENTARITY

cLFV searches in the muon sector - the naive view

- cLFV in the muon sector searched for decays (μ -> e γ, μ -> e e e) and μ -> e conversion in nuclei
- Effective Field Theory (EFT) approach:
 - μ -> e γ sensitive to dipole
 operators
 - μ -> e e e and μ N -> e N sensitive to both dipole and 4-fermion operators

Naive conclusion: the upcoming μ -> e conversion experiments will overcome the muon decay experiments

cLFV searches in the muon sector - the full view

- Operators mix at the loop level:
 - μ -> e γ also sensitive to
 4-fermion operators
 - μ -> e γ can give the strongest bound in some scenarios

STRONG COMPLEMENTARITY

A. Crivellin et al., JHEP 1705 (2017) 117

Even in the era of the upcoming μ -> e conversion experiments, μ -> e γ (and μ -> e e e) will continue to play a crucial role

History of cLFV searches

Hincks & Pontecorvo [Phys. Rev. 73 (1948) 257] muon is not an "excited electron"

Lokanathan & Steinberger [Phys. Rev. A 98 (1955) 240] *lepton flavors*

$\mu \rightarrow e \gamma$ searches

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

Accidental Background

$\mu \rightarrow e \gamma$ searches

The most intense DC muon beam in the world

 The ring cyclotron at PSI (Villigen, CH) serves the most intense DC muon beam lines in the world

$\pi E5$ - up to $10^8\,\mu/s$

Ingredients for a search of $\mu \rightarrow e \gamma$

Reconstruct the Photon Energy

The MEG Experiment

The final MEG result (I)

7.5 x $10^{14} \mu$ on target

Magnified signal (BR = 4×10^{-11})

MEG-II

 The MEG experiment is undergoing an upgrade that involves all sub-detectors

Eur. Phys. J. C78 (2018) no.5, 380

MEG-II Highlights - The LXe Calorimeter

We developed large-area (12x12 mm²), UV-sensitive MPPCs to cover the inner face of the LXe calorimeter

Better Resolution, better pile-up rejection

$$\sigma_{\rm E} \sim 1\%$$
, $\sigma_{\rm position} \sim 2/5$ mm (x,y/z)

First events/spectra from 2017 data

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Detector completed, data taken in 2017 and 2018

Calibration with dedicated laser

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Detector completed, data taken in 2017 and 2018

Already reached the design resolution

MEG-II Highlights - The Drift Chamber

The challenge: minimal material budget (to reduce MS of 50 MeV e⁺) and **very high granularity** (to cope with the high rate) —> small cells (down to < 6 mm) + extremely thin wires (20 µm W(Au) + 40-50 µm Al(Ag)) Innovative wiring technique (no feedthroughs)

Severe problems of wire fragility in presence of contaminants + humidity

 $\sigma_E \sim 130$ keV, $\sigma_{angles} \sim 5$ mrad, 2x larger positron efficiency

MEG-II Highlights - The Drift Chamber

 $\sigma_E \sim 130$ keV, $\sigma_{angles} \sim 5$ mrad, 2x larger positron efficiency

MEG-II Highlights - The Drift Chamber

 Low wire elongation in 2018 (50% of elastic limit) to limit the impact of wire fragility —> electrostatic stability problems (inner layers could not reach the working point)

Layer	50	51	52	53	S4	S 5	56	57	58	59	S10	S 11
9 (1500 V)	1500	1500	1500	1500	1500	1430	1500	1500	1500	1500	1500	1500
8 (1510 V)	1510	1510	1510	1500	1510	1510	1510	1510	1510	1510	1510	1510
7 (1520 V)	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520
6 (1530 V)	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530
5 (1540 V)	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540
4 (1550 V)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
3 (1560 V)	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560
2 (1570 V)	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570
1 (1580 V)	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580

Elongation increased in Spring 2019

New HV tests show that all the chamber can now be operated at the proper working point (1400-1500 V, 5 x 10⁵ gain) with 100 V safety margin

Working point + 100V

green = goal reached

RDC & Target monitoring

50% of acc. background photons come from RMD w/ positron along the beam line

Can be vetoed by detecting the positron in coincidence with the photon

A new detector (LYSO + plastic scint.) built and tested in 2017 -> 16% better sensitivity

The target position in MEG-II has to be known with an accuracy ~ 100 µm to not compromise the angular resolution

A system of photo cameras has been installed to monitor the target position

<< 100 µm resolution reached

MEG-II Highlights - RDC, DAQ, Trigger

Trigger and DAQ will be integrated in a single, compact system (WaveDAQ)

Also provides power and amplification for SiPM/MPPC

Had to face severe common-noise problems — now fixed —

The design and test of the DAQ electronics is going to be finalized in the next few months, mass production will start immediately after

MEG-II Highlights - Calibrations

MEG-II schedule & sensitivity

Conclusions

- cLFV in muon decays is a **golden probe** for NP beyond the SM
- MEG currently gives the **best limits** on muon cLFV
- **MEG-II** will improve the sensitivity by a factor ~ 10
 - Calorimeter & Timing counter tested in 2017 and 2018
 - Drift chamber construction completed and first data collected on beam in 2018 — recommissioning in Spring 2019 allowed to bring the full detector to running conditions
- Engineering run in 2019 with the full detector under running conditions
- First physics data expected in 2020