Speaker
Prof.
Richard Milner
(MIT)
Description
The measurement of the beam-vector and tensor asymmetries in quasielastic electrodisintegration
of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV/c. Data were collected simultaneously over a momentum transfer range 0.1 < Q2 < 0.5 (GeV/c)2 with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target, polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry is found to be directly sensitive to the D-wave component of the deuteron and have a zero-crossing at a missing momentum of about 320 MeV/c, as predicted. The tensor asymmetry A at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.
Primary author
Prof.
Richard Milner
(MIT)