Measurement of Vector and Tensor Asymmetries in Quasielastic (e,e'p) Electron Scattering from Deuterium

- Deuteron structure theoretically calculable to high precision
- The BLAST Experiment D.K. Hasell *et al.*, Ann. Rev. Nucl. Part. Sci. **61**, 409 (2011)
- Quasielastic (e,e'p) Results A. DeGrush et al. Phys. Rev. Lett. 119, 182501 (2017)
- Conclusions

Richard G. Milner

AUGUST 1996

Femtometer toroidal structures in nuclei

J.L. Forest, V.R. Pandharipande, S.C. Pieper, R.B. Wiringa, R. Schiavilla, A. Arriaga

Nucleon-nucleon potential

 $v_{0,1} = v_{0,1}^{c}(r) + \underline{v}_{0,1}^{t}(r)S_{ij} + v_{0,1}^{ls}(r)\mathbf{L} \cdot \mathbf{S} + v_{0,1}^{l2}(r)L^{2}$ $+ v_{0,1}^{ls2}(r)(\mathbf{L} \cdot \mathbf{S})^{2},$

tensor force

- θ is the polar angle of **r** wrt the spin quantization axis
- Strong effect of the tensor force on NN potential depending on different M_s substates
- Equidensity surfaces have very different structures depending on M_s

Equidensity Surfaces having $\rho_d^{\pm 1} = 0.24 \text{ fm}^{-3}$ (A) and $\rho_d^{0} = 0.24 \text{ fm}^{-3}$ (B)

In the absence of the tensor force, the equidensity surfaces are concentric spheres

Richard G. Milner

Predictions for Quasielastic (e,e'p)

FIG. 12. The calculated values of $\tilde{d}(e,e'p)n$ cross section for the kinematics described in the text. Hollow and full symbols indicate results of complete calculations without and with meson-exchange currents.

Zero around 300 MeV/c!

Richard G. Milner

Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic $(\vec{e}, e'p)$ Electron Scattering from Deuterium

A. DeGrush,¹ A. Maschinot,¹ T. Akdogan,^{1,‡} R. Alarcon,² W. Bertozzi,¹ E. Booth,³ T. Botto,¹ J. R. Calarco,⁴ B. Clasie,¹ C. Crawford,⁵ K. Dow,¹ M. Farkhondeh,¹ R. Fatemi,⁵ O. Filoti,⁴ W. Franklin,¹ H. Gao,⁶ E. Geis,² S. Gilad,¹ D. K. Hasell,^{1,*} P. Karpius,⁴ M. Kohl,⁷ H. Kolster,¹ T. Lee,⁴ J. Matthews,¹ K. McIlhany,⁸ N. Meitanis,¹ R. Milner,¹ J. Rapaport,⁹ R. Redwine,¹ J. Seely,¹ A. Shinozaki,¹ A. Sindile,⁴ S. Širca,¹⁰ E. Six,² T. Smith,¹¹ B. Tonguc,² C. Tschalär,¹ E. Tsentalovich,¹ W. Turchinetz,^{1,†} Y. Xiao,¹ W. Xu,⁶ Z.-L. Zhou,¹ V. Ziskin,¹ and T. Zwart¹

(BLAST Collaboration)

¹Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Arizona State University, Tempe, Arizona 85287, USA ³Boston University, Boston, Massachusetts 02215, USA ⁴University of New Hampshire, Durham, New Hampshire 03824, USA ⁵University of Kentucky, Lexington, Kentucky 40504, USA ⁶Triangle Universities Nuclear Laboratory and Duke University, Durham, North Carolina 27708, USA ⁷Hampton University, Hampton, Virginia 23668, USA and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ⁸United States Naval Academy, Annapolis, Maryland 21402, USA ⁹Ohio University, Athens, Ohio 45701, USA ¹⁰Faculty of Mathematics and Physics, University of Ljubljana, and Jožef Stefan Institute, 1000 Ljubljana, Slovenia ¹¹Dartmouth College, Hanover, New Hampshire 03755, USA

Richard G. Milner

MIT-Bates Linear Accelerator Center

DOE Nuclear Physics National User Facility 1974-2005

> DOE Nuclear Physics Research & Engineering Center of Excellence 2005 - present

SPIN 2018 Ferrara, Italy

500m

- Siberian snake
- Spin flipper
- Compton polarimeter

South Hall Ring

Richard G. Milner

SPIN 2018 Ferrara, Italy

 $L \sim 10^{32}$ electron-atoms cm²s⁻¹

Stored beam for BLAST

- Accelerator complex and BLAST experiment fully automated
- Stored currents: routinely fill to 225 mA, lifetime of 35 minutes at 100mA
- Beam Polarization:
 Richard G. Milner
- ~65% with possibility of rapid reversal (flipper) SPIN 2018 10

Ferrara, Italy

South Hall Ring Polarization

Electron beam energy: 850 MeV

Compton polarimeter data from Dec. 2003 – Dec. 2004 Mean polarization of 66% measured

Richard G. Milner

SPIN 2018 Ferrara, Italy 11

BLAST Detector

- Toroidal magnetic field
 - 3.8 kG max
- Drift Chambers
 - 3 chambers/sector
 - 2 superlayers/chamber (±5°)
 - 3 sense layers/superlayer
 - 18 tracking layers/sector
 - 954 sense wires
 - Cerenkov Detectors
 - 1 cm thick aerogel
 - Electron identification
 - Time of flight scintillators
 - 16 vertical bars, 2.5 cm thick
 - Trigger and relative timing
- Neutron detectors
 - 10 cm thick in left sector
 - 25-30 cm thick in right sector
- 2 level, 8 channel trigger system
 - Concurrent data acquisition

Richard G. Milner

NEUTRON

BLAST Toroid

- 8 copper coils – 6730 A
 - 3700 G
- field mapped (3D)
 - coil position adjusted
 - ±1% of calculated
 - minimize target field
 - tracking

Richard G. Milner

BLAST Polarized ²H Target

D. Cheever et al., Nucl. Instr. Meth. A 556, 410 (2006)

- Atomic beam source embedded in ≈2 kG BLAST toroidal magnetic field
- Required custom shielding of many components
- Flux: $5 \ge 10^{16}$ atoms/sec
- Drifilm coated, cryogenically cooled target cell
- Cycled through M_s sub-states
- Target spin-states switched every 5 minutes
- $h = 0.656 \pm 0.007(\text{stat}) \pm 0.04$ (sys)
- $hPz = 0.580 \pm 0.0034$ (stat) ± 0.0054 (sys)
- $Pzz = 0.683 \pm 0.015(stat) \pm 0.013(sys)$

Richard G. Milner

H & D2 collected charge for BLAST, 2004-2005 = 3.25 MegaCoulomb

Elastic Electron Scattering Primer

$$W^2 = (q + p)^2 = M^2 + 2Mv - Q^2$$

Elastic scattering: $W^2 = M^2 \implies Q^2 = 2 Mv$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \bullet \left[\frac{G_E^{\ \ p2} + \tau G_M^{\ \ p2}}{1 + \tau} + 2\tau G_M^{\ \ p2} \tan^2 \frac{\theta}{2}\right]$$

Richard G. Milner

BLAST scientific motivation: nucleon and nuclear structure at low Q²

- Pion is essential to understanding both nucleon and nuclear structure
- In low energy elastic electron-nucleon scattering one would expect effects of mesons to occur at

 $r \sim 2 \text{ fermi} \implies Q^2 \sim 0.1 (GeV/c)^2$

- Search for effects of meson cloud on long distance structure of nucleon
- Seek precise determination of neutron electric form factor with low systematic uncertainties
- Spin structure of deuterium is a stringent test of our understanding of the nucleon-nucleon interaction in nuclei
- **Optimal experimental technique**: precision experiments possible using polarized gas target internal to electron storage ring

Richard G. Milner

Polarized Elastic Electron Scattering

- In elastic scattering, polarizing both the electron and the target proton, allows determination of the ratio G_E/G_M with low systematic uncertainty.
- With a tensor polarized deuteron target, elastic scattering yields T_{20} .
- With a vector polarized deuteron target, and by detecting the neutron in coincidence, the ratio G_E/G_M can be determined for the neutron.
- Spin is used as a "knob" to access scattering from the neutron.
- By detecting quasielastic ²H(e,e'n) scattering, Gⁿ_E(Q²) was determined at MIT-Bates at low Q² using the Bates Large Acceptance Spectrometer Toroid (BLAST).

Charge distribution of neutron

Interpretation of Neutron Charge Distribution

Figure 9

 $4\pi r^2 \rho_{\text{Breit}}^n(r)$ showing the relative contributions of the various vector mesons from the GKex model together with the perturbative quantum chromodynamics (pQCD) contribution.

Richard G. Milner

Precision measurement of deuteron tensor analyzing powers with BLAST

C. Zhang *et al.,* Phys. Rev. Lett. **107**, 252501 (2011)

Precision data validate effective field theory

Richard G. Milner

Quasielastic ²H(e,e'p) Reaction

Cross section

$$\frac{d\sigma}{d\omega d\Omega_e d\Omega_{pn}^{\rm CM}} = S_0 [1 + P_z A_d^V + P_{zz} A_d^T + h(A_e + P_z A_{ed}^V + P_{zz} A_{ed}^T)]$$

(e)

Missing momentum

$$\boldsymbol{p}_m \equiv \boldsymbol{q} - \boldsymbol{p}_f$$

- Electron beam polarized
- ²H both vector and tensor pol.
- **q** and **p**_f and thus **p**_m determined by BLAST spectrometer
- Large acceptance => p_m measured up to 500 MeV/c
- Data taking simultaneous with Gⁿ_E and T₂₀ measurements

Richard G. Milner

(d)

Quasielastic ²H(e,e'p) Data Taking

FIG. 1. Histograms of the yields versus missing mass for target spin angle $\approx 31^{\circ}$ without (red) and with (black) Čerenkov cuts for $0.1 < Q^2 < 0.5 \ (\text{GeV}/c)^2$ for *opposing* (left) and *same* (right) sector kinematics.

- Data taken in two separate running periods
- Simultaneous with BLAST measurements of G^{n}_{E} and T_{20}
- Average target spin angles were 31.3±0.43° and 47.4±0.45°
- Target spin angle was in horizontal plane pointing into the left sector
- Determined using T₂₀ data
 - Electrons scattered into the right (left) sector delivered momentum transfer predominantly parallel (perpendicular) to the target spin vector, the so-called *same sector* (*opposing sector*) kinematics

Quasielastic ²H(e,e'p) Vector Asymmetries

FIG. 2. Beam-vector asymmetries A_{ed}^V for $0.1 < Q^2 < 0.5$ (GeV/c)² vs p_m . Panels (a) and (c) refer to same sector kinematics for target spin angles $\approx 31^\circ$ and $\approx 47^\circ$. Panels (b) and (d) refer to opposing sector kinematics for the same target spin angles.

$$\mathbf{A^{V}_{ed}} \approx \mathbf{hP_{z}} \text{ at } \mathbf{p_{m}} = \mathbf{0}$$

$$P = \sqrt{\frac{2}{3}} P_{z} \left(P_{s} - \frac{1}{2} P_{D} \right)$$

Zero crossing at about 320 MeV/c

Richard G. Milner

Quasielastic ²H(e,e'p) Tensor Asymmetries

FIG. 3. Tensor asymmetries A_d^T for $0.1 < Q^2 < 0.5$ (GeV/c)² vs p_m . Panels (a) and (c) refer to *same sector* kinematics for target spin angles $\approx 32^\circ$ and $\approx 47^\circ$. Panels (b) and (d) refer to *opposing sector* kinematics for the same target spin angles.

- At low p_m, S-state dominates so A^T_d is small
- At high p_m, D-state dominates
- However, at high p_m there is a strong influence of FSI: tensor component of NN force

Summary

- Newly published data are reported for A_{ed}^{V} and A_{d}^{T} spin asymmetries for $0.1 < Q^2 < 0.5$ (GeV/c)².
- Mapped out in quasielastic kinematics ${}^{2}H(e,e'p)$ over $0 < p_{m} < 500 \text{ MeV/c}.$
- Polarized electron beam incident on vector and tensor polarized ²H target.
- Large acceptance detector allows large range in Q^2 and p_m .
- D-state contribution is clearly evident as p_m increases.
- A_{ed}^{V} has a zero crossing at $p_m \approx 320$ MeV/c, as predicted.
- A^T_d in same and opposing sector kinematics probe the proton-neutron interaction over a large spatial range.
- Theoretical understanding validated by experiment.