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1) Teorie di campo quantistiche interagenti su spazi curvi nell'approccio perturbativo
    -  nell'approccio funzionale tipo delle teorie algebriche: 
  
    - Analisi di metodi efficienti per la rinormalizzazione necessaria a definire i prodotti tempo 
ordinati presenti nell'espansione perturbativa.

    - Stabilità degli stati quantistici costruiti con la teoria perturbativa

2) Equazione di Einstein semiclassica: Influenza della materia quantistica sulla curvatura

   - Abbiamo provato un teorema di esitenza e unicità globale per queste teorie in ambito 
cosmologico 

   - Vogliamo studiare questo problema in presenza della sola simmetria sferica, ovvero nel 
caso in cui nello spaziotempo sia presente un buco nero sferico. 

    Il nostro scopo è quello di costrure un modello microscopico (basato su equazioni locali) in 
cui si possa studiare l'evaporazione dei buchi neri dovuta alla radiazione di Hawking (nessun 
modello di questo tipo è presente in letteratura).

3)  Psiquadro per sistemi invarianti per diffeomorfismi  (tesi  dottorato Matematica, Monaco)

Gravità
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Estensione analisi Boltzmann per lʼapproccio allʼequilibrio di sistemi macroscopici quantistici
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Weak Values from Displacement Currents in Multiterminal Electron Devices

D. Marian,1, 2 N. Zangh̀ı,1 and X. Oriols2, ∗

1Dipartimento di Fisica dell’Università di Genova and INFN sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
2Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193-Bellaterra (Barcelona), Spain

Weak values allow the measurement of observables associated to non-commuting operators. Up
to now, position-momentum weak values have been mainly developed for (relativistic) photons.
In this work, a proposal for the measurement of such weak values in typical electronic devices is
presented. Inspired by the Ramo-Shockley-Pellegrini theorem that provides a relation between total
current and electron velocity, it is shown (through many-particle system-plus-apparatus simulations)
that the displacement current measured in multiterminal configurations can provide either a weak
measurement of the momentum or strong measurement of position. This proposal opens a large
number of new opportunities for implementing quantum engineering or fundamental experiments
with state-of-the-art electronic technology. As an example, a setup for the measurement of the
Bohmian velocity of (non-relativistic) electrons is presented by a weak measurement of momentum
post-selected with a strong measurement of position.

Introduction.–Nowadays, there is a rapidly growing in-
terest on weak measurement [1, 2], both from a funda-
mental and an applied point of view. Since weak val-
ues allow the measurement of incompatible observables
(associated to non-commuting operators), many relevant
topics of quantum mechanics, such as the controversial
tunneling times [16], Hardy’s paradox [8, 9] or Leggett-
Garg inequalities [10, 11], quantum amplification [3–5],
are now being revisited. Specially attractive is the simul-
taneous measurement of position and momentum: the
weak value constructed by a weak measurement of posi-
tion post-selected by a strong measurement of momen-
tum is proportional to the wave function of the system
[6, 7], while a weak measurement of momentum post-
selected by a strong measurement of position gives the
local velocity of a quantum particle [18, 28].

Most experimental techniques for weak values are de-
veloped for (relativistic) photons, whose technology is not
easily transferable to nowadays industrial applications
based on electronics. Some preliminary attempts to deal
with weak measurements in electronics are reported in
Refs. [13–15, 17]. However, such techniques are unable to
weak measure the fundamental position and momentum
of a quantum state. In this work, we propose an original
strategy to get information of such (incompatible) ob-
servables through the measurement of the displacement
electrical current in a multiterminal solid state device.
Our proposal opens new routes to study, both, funda-
mental and quantum engineering applications.

In particular, as a numerical example of the potential-
ities of our proposal, inspired by the old works of Shock-
ley and Ramo [22, 23], we discuss the measurement of
the local (Bohmian) velocity for a (non-relativistic) elec-
tron obtained from a weak value constructed from two
measurements of the displacement current on two dif-
ferent metallic surfaces belonging to a mesoscopic three-
terminal device. In this regard, let us notice that the
recent measurement of the local velocity of an ensem-
ble of photons done by Kocsis et al.[12] can not be,
strictly speaking, associated to Bohmian velocities be-

cause the Wiseman’s proposal [18] was developed for non-
relativistic quantum mechanics. On the contrary, in this
letter, we explain a protocol for the true measurement of
the (non-relativistic) Bohmian velocity.
Weak measurement of the total current.– The measure-

ment of the electrical current can be understood as a two
step process. The first step is an electromagnetic propa-
gation of the total current along the cable (that connects
the quantum system and the ammeter in Fig. 1). The
total current on Si is equal to the current on the surface,
SA, far from the active region. This equivalence (due to
the divergenceless of the total current) is exact for the
sum of the particle plus the displacement currents, but
not for particle current alone. The second step is done by
the ammeter that transforms the total current SA into a
pointer value.
In this letter we discuss the many-body quantum ver-

sion of this two-step process measurement with the corre-
sponding quantum errors and backaction [20]. We define
the density matrices of the system and the prove, at the
initial time t0, as ρ̂(t0)sys and ρ̂(t0)pro, respectively. The
unitary time evolution of the density matrix of the en-
tangled systems between the initial time t0 and the final
time tm is:

ρ̂tot(tm) = Û(t0, tm) (ρ̂(t0)sys ⊗ ρ̂(t0)pro) Û(t0, tm)†(1)

where the unitary operator Û(t0, tm), which contains the
free part of the system and of the probe as well as the
electromagnetic interaction between them, is the respon-
sible of the first step, i.e. translating the total current
from Si towards SA (see Fig. 1).

The second step of the measurement is done at time
tm by a projective measurement of the probe performed
by the ammeter. Such measurement provides the value Ĩ
on the pointer [19]. Thus, the probability of having the
specific result Ĩ associated with the eigenstate |Ĩ� in the
ammeter at time tm is:

P(Ĩ , tm) = Trpro
�
|Ĩ��Ĩ|ρ̂�pro(tm)

�
, (2)
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Observing the Average Trajectories of Single 
Photons in a Two-Slit Interferometer

1. Sacha Kocsis1,2,*, Boris Braverman1,*, Sylvain Ravets3,*, Martin J. 
Stevens4, Richard P. Mirin4, L. Krister Shalm1,5, Aephraim M. 
Steinberg1,†

Weak Measurement of the Bohmian Trajectories

Experimental Bohmian trajectories:
Photons in a double slit set-up

From: S. Kocis, et al., Science, 332 (2011).

Theoretical Bohmian trajectories

From: C. Philippidis, et al., Il nuovo cimento B (1979)

Measured trajectories are comparable to the ones predicted by Bohmian
mechanics!!!

⇓
Is it possible to envisage an analogous experiment for electrons?
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FIG. 1. Schematic representation of the system studied. We
have divided the all problem in three parts, in the middle
there is the system we are interested in (system) which inter-
act through Coulomb interaction (red dashed line) with NP

electrons in the metal surface (probe). Finally the probe in-
teracts with the ammeter (meter) which gives the final result
of the measurement. The surfaces Si and SA (green dashed
dotted line) and the volume Ω (blue dashed line) used in the
text are indicated.

where ρ̂�pro(tm) = Trsys(ρ̂tot(tm)) are the reduced density
matrix of the probe with Trsys the partial trace operation
over the system coordinate. The relevant point is that the
density matrix of the NS particles in the quantum system
do not suffer the strong collapse done in Eq. (2), i.e. it
is not projected into an eigenstate |Ĩ�. For simplicity,
hereafter, we will consider NS = 1, while we will consider
an arbitrary large number NP of particles in the probe.

The standard way of describing the probability
P(Ĩ , tm) in the literature is not by referring to the whole
probe’s coordinates, but to the quantum system’s coor-
dinates alone as:

P(Ĩ , tm) = Trsys
�
Î(Ĩ)ρ̂�sys(tm)

�
, (3)

where ρ̂�sys(tm) = Trpro(ρ̂tot(tm)) is the reduced density
matrix of the system with Trpro the partial trace op-
eration over the probe’s coordinate. In Eq. (3), we de-
fine Î(Ĩ) as a general positive operator-valued measure
(POVM).

Î(Ĩ) =

�
|I�g(Ĩ , I)�I|dI (4)

where g(Ĩ , I) is a real positive number. If we intro-
duce the quantum system density matrix ρ̂�sys(tm) =�

J pJ(tm)|ψJ��ψJ | with pJ(tm) a normalized probability
and |ψJ� =

�
aJI (tm)|I�dI into Eq. (3), together with Eq.

(4), the term g(Ĩ , I) can be computed from the relation:

P(Ĩ , tm) =
�

J

pJ(t)

�
g(Ĩ , I)|aJI (tm)|2dI (5)

Next, we discuss in what conditions the measurement of
the total current is in fact a measurement of the momen-
tum of the quantum system.

Displacement current and momentum measurement.–
The (quantum ensemble) value of the total current �I�
can be computed [24, 26] straightforwardly as the sum of

the particle current plus the displacement current on the
surface Si:

�I(t)� =
�

Si

�Jc(r, t)� · ds+
�

Si

�
d�E(r, t)�

dt
· ds (6)

where � is the dielectric constant of the material, �Jc(r, t)�
the quantum ensemble value of the standard quantum
particle current density and �E(r, t)� the quantum en-
semble value of the electric field on the surface. Identi-
cally, from the Ramo-Schockley-Pellegrini theorems with
a quasi-static approximation that neglects the magnetic
contribution [24, 26], such mean value in Eq. (6) can be
written as:

�I(t)� = −
�

Ω
F(r)·�Jc(r, t)�·dv+

�

S
�·F(r)· d�V (r, t)�

dt
·ds(7)

where S is the close surface of the volume Ω that con-
tains Si and �V (r, t)� is the ensemble value of the electro-
static potential. In the particular situation where elec-
tron transport takes place between two metallic surface
included into Ω, no variation of the potential appears on
these surfaces, i.e. d�V (r, t)�/dt = 0. If the distance
Lx between the metallic surfaces is smaller than the area
of the surfaces, L2

x � Si, we get F(r) = 1/Lx [24, 27].
Then, Eq. (7) can be rewritten as

�I(t)� = q

mLx
�p(t)�Ω, (8)

where �p(t)�Ω is the mean value of the momentum in the
volume Ω of the device. We have assumed that the sup-
port of the density matrix of the quantum system is inside
the volume Ω. The equivalence between the total current
and the momentum of the quantum system is obviously
true for either an ensemble value or the previous weak
measurement. An alternative demonstration of Eq. (8) is
presented in section B of the supplemental material.
Numerical evaluation of P(Ĩ , t).–In order to compute

the probability, one needs to simulate the time evolution
in Eq. (1) and use Eq. (2). Obviously, the exact solution
of this problem is not accessible, but fortunately we can
provide some reasonable simplifications to handle this
problem. First of all, we assume a quasi-static approxi-
mation to neglect the magnetic field (this is reasonable
for nanometric electron devices until frequencies of few
hundreds of THz[24, 26]). The many-particle Coulomb
interaction among electrons is enough to consider the
transmission of the total current form Si towards Sa [46]
To numerically treat the problem we make use of

the method reported in Ref. [39] based on the def-
inition of the conditional wave functions ψj

i (x1, t) =
Ψ(Xj

1(t), ...,X
j
i−1(t), xi,X

j
i+1(t), ...., t) for each i-particle

with Ψ the many particle wave function [34–36, 39]. The
capital letter Xj

i (t) denotes the actual (Bohmian) posi-
tions of the particles. The subindex i = 1, .., NP+1 refers
to the particle in the quantum system plus the NP par-
ticles in the probe. The superindex j = 1, ...,M denotes
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zero when the particle crossed the small surface located

at xs. In this surface, the total current can be written:

Îs(xs) = Cs

�
dxe

− (x−xs)2

2σ2
s |x��x|. (12)

An alternative derivation of Eq. (12) is provided in sec-

tion D of the supplemental material.

The exact procedure for measuring the Bohmian ve-

locity is the following: The total density matrix evolves

from t0 till tm following Eq. (1). At time tm the w-

ammeter measures weakly the momentum of the particle

through Eq. (2). Then, the quantum system evolves until

a peak of current is measured (or not) in the s-ammeter.

The values measured with the w-ammeter will be post-

selected by the positions measurement performed by the

s-ammeter. Thus, we compute the following quantity:

E[pw|xs] =

�
dpwpwP(pw ∩ xs)

P(xs)
, (13)

which under the condition σw � (�/σs) simply becomes:

E[pw|xs]

m
=

J(xs, tm)

|ψ(xs, tm)|2 ≡ v(xs, tm) (14)

where m is the mass of the particle and v(xs, tm) is ex-

actly Bohmian velocity. See supplemental material A.

Hereafter, in order to provide a realistic estimation on

how many experiments M are needed to capture typi-

cal quantum interference phenomena in electronic devices

and to understand the back-action in the system asso-

ciated, we provide a direct numerical simulation of the

whole weak value procedure by directly simulating Eq.

(1) from t0 till tm and a posterior measurement through

Eq. (2) using the conditional wave function technique

mentioned in Eq. (9). In Fig. 3a it is reported the ve-

locity v(xs, t), which is proportional to the total current)

obtained from an ensemble of M = 55000 identically pre-

pared two-time measurement experiments. In particular,

in order to see interference effects we consider as initial

wave function ψ(x1, 0) a superposition of two gaussian

wave packets, in the motion direction x, which have the

central position spatially separated of 50 nm (as it can

be seen at the initial time in Fig. 3c). Each gaussian wave

packet has the same dispersion of 3 nm and the same en-

ergy of 0.0905 eV . The velocity field exhibits the typical

maximum and minima of the interference pattern.

As a final result, in Fig. 3c is reported the compari-

son of the trajectories obtained from the procedure just

described and the wave function of the single particle

problem. It can be seen that, as expected from Bohmian

Mechanics, the trajectories are more dense near the max-

imum and are less dense near the minimum of the inter-

ference pattern of the wave function.

Conclusions.–In conclusion, we have proposed an

experimental measurements in solid state devices,

in general, of weak values related with position and

momentum and, in particular, of the Bohmian velocity
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FIG. 3. a) Red points (with error) Bohmian velocity in po-
sition xs at time t = 0.3 ps, obtained from an ensemble of
M=55000 experiments with the inclusion of the electrons in
the metal surface (with ammeter). The error is calculated
from the standard deviation of the ensemble at time t and
position xs divided by the square root of trajectories pass-
ing through position xs at time t. Green solid line Bohmian
velocity in position xs obtained from the same set of simula-
tions without considering the electrons in the metal surface
(without ammeter). b) Schematic representation of the three
terminal device described in the text. c) Wave function (upper
plot) and Bohmian trajectories for the numerical experiment
described in the text. The green dashed line represent the
time chosen for the plot in a).

of a (non-relativistic) electron. The feasibility of these

experiments have been tested numerically in the iconic

double-slit experiment. The experiment proposed here

works with single electron sources, which are already

available [41]. The consideration of a more standard

thermal injection in real solid-state devices will provide

the (ensemble) velocity of the mixed state of the quan-

tum system [44]. These experiments can be done at

frequencies as low as f = 50 GHz when larger coher-

ence length; for example of 5 µm in graphene[42], are

accessible. As a final remark, we notice that the present

work, apart from answering what means measuring the

high frequency quantum current, it opens unexplored

paths for fundamental and applied experiments (for

quantum tomography, quantum computing, etc.) using

solid-state-electronics, in analogy with the already

existing experiments for photons.

This work has been partially supported by the “Min-

Time-resolved electron transport with quantum trajectories 
with G. Albareda, D. Marian, A. Benali, and X. Oriols
Journal of Computational Electronics 12 405-419 (2013)

http://link.springer.com/article/10.1007/s10825-013-0484-5
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Fermionic Wave Functions on Unordered
Configurations

Sheldon Goldstein∗, James Taylor†,
Roderich Tumulka‡, and Nino Zangh̀ı§

March 11, 2014

Abstract

Quantum mechanical wave functions of N identical fermions are usually repre-
sented as anti-symmetric functions of ordered configurations. Leinaas andMyrheim
[14] proposed how a fermionic wave function can be represented as a function of
unordered configurations, which is desirable as the ordering is artificial and un-
physical. In this approach, the wave function is a cross-section of a particular
Hermitian vector bundle over the configuration space, which we call the fermionic
line bundle. Here, we provide a justification for Leinaas and Myrheim’s proposal,
that is, a justification for regarding cross-sections of the fermionic line bundle
as equivalent to anti-symmetric functions of ordered configurations. In fact, we
propose a general notion of equivalence of two quantum theories on the same con-
figuration space; it is based on specifying a quantum theory as a triple (H ,H,Q)
(“quantum triple”) consisting of a Hilbert space H , a Hamiltonian H, and a fam-
ily of position operators (technically, a projection-valued measure on configuration
space acting on H ).

PACS. 03.65.Vf; 03.65.Ta. Key words: bosons and fermions, symmetrization pos-
tulate, topological phases, Hermitian vector bundles, holonomy.
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