5. Theoretical Physics (CSN4)

Models with radiative neutrino masses and viable dark matter candidates

by Dr Diego Restrepo (Antioquia Univ.)

Aula A1 (LNF)

Aula A1


Via Enrico Fermi, 40 00044 Frascati (Roma)
We provide a list of particle physics models at the TeV-scale that are compatible with neutrino masses and dark matter. In these models, the Standard Model particle content is extended with a small number (\leq 4) of scalar and fermion fields transforming as singlets, doublets or triplets under SU(2), and neutrino masses are generated radiatively via 1-loop diagrams. The dark matter candidates are stabilized by a Z_2 symmetry and are in general mixtures of the neutral components of such new multiplets. We describe the particle content of each of these models and determine the conditions under which they are consistent with current data. We find a total of 35 viable models, most of which have not been previously studied in the literature. There is a great potential to test these models at the LHC not only due to the TeV-scale masses of the new fields but also because about half of the viable models contain particles with exotic electric charges, which give rise to background-free signals. Our results should serve as a first step for detailed analysis of models that can simultaneously account for dark matter and neutrino masses.