The QCD axion, originally proposed to resolve the strong CP problem, is also a compelling dark matter (DM) candidate. In strong magnetic fields, such as those surrounding neutron stars, axions can convert into photons, potentially generating detectable radio signals. This axion-photon coupling offers a unique avenue for experimental searches in a well-defined mass range. In this seminar, I will present an observational study using the Green Bank Telescope (GBT) to search for transient radio signals from axion-photon conversion. Focusing on the core of Andromeda, we employ the VErsatile GBT Astronomical Spectrometer (VEGAS) and the X-band receiver (8–10 GHz) to probe axions with masses between 33 and 42 μeV, achieving a mass resolution of 3.8 × 10^-4 μeV. We describe our observational strategy and analysis techniques, which reach an instrumental sensitivity of 2 mJy per spectral channel. While no candidate signals exceeding the 5σ threshold were detected, I will discuss future improvements, including expanding the search to additional frequency bands and refining theoretical models, to strengthen constraints on axion DM scenarios.