10–12 Dec 2024
Physics Dept and INFN, Catania
Europe/Rome timezone

An API for training Physics-Informed Kolmogorov-Arnold Networks using Nvidia Modulus SYM

Not scheduled
20m
Conference Room (Physics Dept and INFN, Catania)

Conference Room

Physics Dept and INFN, Catania

Cittadella Universitaria Edificio 6, Università degli Studi di Catania Via S. Sofia, 64, 95123 Catania CT https://infn-it.zoom.us/j/86952341946?pwd=ER9LlLZ9X9IRzx7Ym64QzCA5ExXYuo.1
Innovation Grants

Speaker

Alessandro Bombini (Istituto Nazionale di Fisica Nucleare)

Description

In this contribution we discuss the novel neural network architecture, based on the Kolmogorov-Arnold Representation Theorem, dubbed "Kolmogorov-Arnold Network" (KAN), its variants (like the Chebyshev-KAN, the Jacobi-KAN, the FastKAN), and its applications to numerical resolution of PDEs via the Physics-Informed Neural Network (PINN) framework.

We discuss our implementation of the API for using seamlessly these network architectures within a widely adopted open source package for PINN, Nvidia Modulus SYM.

Primary author

Alessandro Bombini (Istituto Nazionale di Fisica Nucleare)

Presentation materials