Orientation of ID sub-assemblies within the Cryostat Reference Frame

M. Carlini June 20th, 2024

Hall C entrance

M. Carlini May 9th, 2024

Hall C entrance

NORTH

"Vessel Dome + Lifting Beams" sub-assembly

DS20k_ID_VESS_TopDome+Beams.SLDASM

- One single orientation is allowed.
 - Lifting Beams should align properly with hooks of the two external crane in Hall C;
 - Dome ports should align with cryostat ports;
 - 3 HV ports create an asymmetry.

Proposed **reference frame** to be used for ID model and proposed **labeling scheme** to identify the eight sides of the octagonal components (agreed with D. Rogowsky)

M. Carlini May 9th, 2024

Hall C entrance

NORTH

Relative constraints between ID subassemblies

"Calibration Pipes" sub-assembly

DS20k_ID_CAL__Cal.SLDASM

- Four orientations are in principle allowed.
 - The assembly has a 90 degree symmetry (if "upper U pipe" or "lower U pipe" can be swapped);

- The Calibration Pipe orientation constraints the orientation of the BOP once the pipe connection to BOP are put in place.
 - the U brackets shall not conflict with vPDU locations
 - the U brackets shall match the brackets holes in the BOP.

"Vertical Support Rods" sub-assembly

DS20k_ID_SUPP__Support.SLDASM

- Four orientations are in principle allowed.
 - The location of the rods in the space is defined by the dome orientation;
 - The 8-rod-assembly has a 90 degree symmetry;

 The Vertical Support Rods orientation constraints the allowed orientations of the TOP and BOP.

"TOP" sub-assembly

DS20k_ID_MULT__TOPFull.SLDASM

- Four orientations are in principle allowed.
 - The vertical rod positions are defined
 - The TOP assembly has a 90 degree symmetry as far as mounting is concerned;
- The TOP orientation:
 - fully constraints the orientation of the ANODE due to the central post;
 - The push/pull system works with the Anode post being in any of the four quadrants (confirmed by Nic).
 - defines (weakly) the cable bundles location. Cables leaves the TOP through 6 sides out of 8.
 - Constraints (weakly) the BOP orientation through cable bundles

Central post hole

"ANODE" sub-assembly

DS20k_ID_ANOD__Anode.SLDASM

- Its orientation is fully constrained by the orientation of the TOP due to the central post;
- The ANODE orientation constraints:
 - the possible orientations of the BARREL:
 - the levelmeter ports on the ANODE/BARREL should match (90 degree symmetry).
 - the possible orientations of the CAL pipes (conflict with levelmeter ports)
 - possible locations of the bubbler and of the boiler;
 - the possible orientations of the grid;
 - the ANODE HV connection should align with grid segments without faraday cage (no wires).

Levelmeter ports

Bubbler/boiler ports

Central post

"BARREL" sub-assembly

DS20k_ID_MULT__Barrel+FC.SLDASM

- Its orientation is constrained by the orientation of the ANODE and by the HV feedthrough for the top-most ring
 - The assembly has a 90 degree symmetry (mostly due to the levelmeter ports);
- The BARREL orientation constraints:
 - the possible orientations of the GRID:
 - through the HV connector (shall we keep it on the HV port side)
 - ► LAr inlet ports conflict with CAL pipes —> need to shift them
 - the possible locations of the boiler (due to a special port on a single panel);
 - the possible orientations of the CATHODE (through the locking feet);
 - the possible orientations of the IV frames (some frames will have to embed cable trays);

LAr Inlet Top Row

LAr Inlet Central Row

Double port: LAr Inlet+Levelmeter

Boiler port (ona. Single panel)

"GRID" sub-assembly

DS20k_ID_GRID__Grid.SLDASM

- Its orientation is constrained by:
 - the centering guides on the BARREL shelf;
 - the location of the HV connector on BARREL external lip;
 - the location of the ANODE ground connector (still to be designed).

"CATHODE" sub-assembly

DS20k_ID_CATH__Cathode.SLDASM

- Its orientation is fully constrained by the orientation of the DOME
 - The HV CONE should stay on the opposite side of the DOME HV ports

- The CATHODE orientation:
 - defines uniquely the orientation of the BOP
 - thought the opening for the HV cone and through the feet

"BOP" sub-assembly

DS20k_ID_MULT__BOPFull.SLDASM

- Its orientation is fully constrained by the CATHODE orientation brought the HV CONE
- Partially constrained by the CAL pipes

- The BOP orientation constraints:
 - defines (weakly) the cable bundles location. Cables leaves the BOP through 6 sides out of 8.
 - Constraints (weakly) the TOP orientation through cable bundles

Assembly in the Hall C reference frame

Moving to the global reference frame

Started bottom-up knowing the vessel dome orientation is fully defined by matching of HV ports on the cryostat;

- 1. BOP orientation fully defined by HV cone (opposite side of dome HV ports);
 - → No conflicts between vPDU and CAL pipes;
 - → Optimum alignment between potential cable bundle location and dome cable ports.
- 2. CATHODE orientation fully defined by HV cone(opposite side of dome HV ports);
- 3. **TOP** has **2 orientations** fulfilling the (weak) requirement that it mirrors BOP as far as cable boundles are concerned;
- 4. **ANODE** orientation fully defined by TOP
 - → No conflicts between CAL pipes and ANODE levelmeter ports;
- BARREL has 4 orientations fulfilling the requirement that the level meters do not conflict with CAL pipes
 - → Boiler/Bubbler location will follow naturally;

Labelling

- Need to find a way to propagate the label (1...8) to object names within the sub-assemblies;
 - → Need to change name of "object" in the tree of each sub-assembly and not of the component file (that is used multiple times within an assembly)
- Luca will reach out to the responsible of the component design to implement this together
 - Anode: Anson
 - Cathode & Barrel: Mitch
 - TOP & BOP: Emile
 - Grid: Tristan
 - Vertical Rods: Emile
 - Calibration Pipes: Marco
 - Boiler/Bubbler/Levelmeter: Andrea I. ?
 - Reflector cage: Andrea P.