

MPGD - ECT

μ – Rwell endcap trackers for the EPIC detector at EIC

Annalisa D'Angelo

University of Rome Tor Vergata & INFN Rome Tor Vergata Rome – Italy

Outline

Scope of the MPGD endcap trackers in the EPIC detector.

Pseudo-rapidity coverage: effective η ranges

Technical performance requirements

Detector Geometry: Envelope and Active Regions

Integration of MPGD endcap trackers in the ePIC detector

Detector technology

2D – readout challenges and test beam results

Hybrid GEM- μ Rwell technology & μ TPC readout

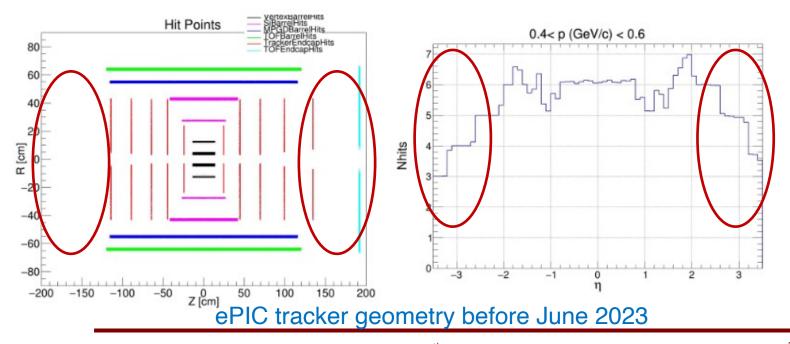
(X,Y) readout – 500 μ m pitch

INFN Involvement

Fabrication and Assembly Plans

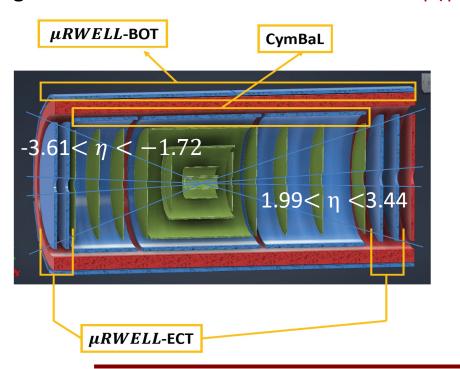
Timeline

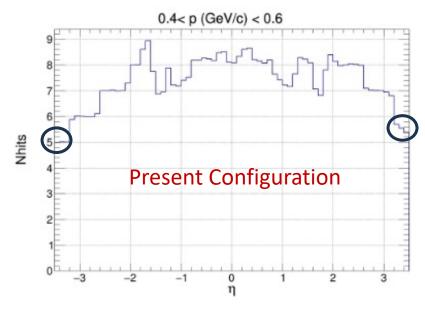
Workforce


Financial Plan

Summary

Scope of the MPGD endcaps in ePIC detector tracking


• In May 2023, MC simulations showed that the **tracking** configuration in the **endcap** regions of the ePIC detector, which will experience the **highest backgrounds** in the experiment, **would not provide enough hit points** in the $|\eta| > 2$ region for good pattern recognition.



Scope of the MPGD endcaps in ePIC detector tracking

• Adding two MPGD Endcap Tracking (ECT) disks both in the hadronic and in the leptonic regions increased the number of hits in the $|\eta| > 2$ region to improve pattern recognition.

Present ePIC tracker geometry

Technical Performance Requirements

Time resolution 10 ns or less to provide tracking timing

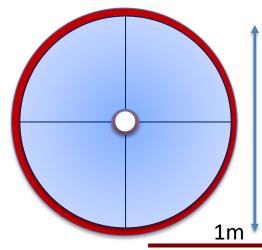
- Fast rise time $\sim 20 \div 50$ ns
- Peaking time 50 ns
- Sampling faster than 50 MHz

Low material budget

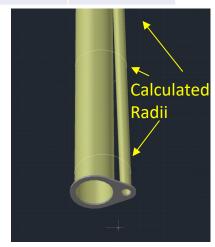
1-2 % X₀ - it will be the minimum compatible with the chosen technology

Spatial resolution: 150 μ m or better

- <150 μ m intrinsic spatial resolution for perpendicular tracks
- Technological optimizations to retain 150 μ m resolution for inclined/curved tracks

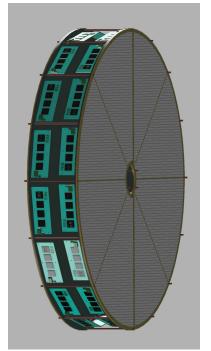

High Efficiency

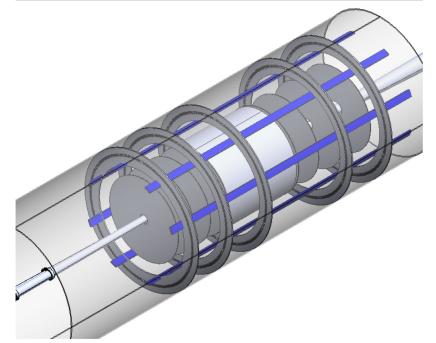
– Single detector efficiency ~ 96 –97 % \rightarrow 92 –94 % combined efficiency for two disks

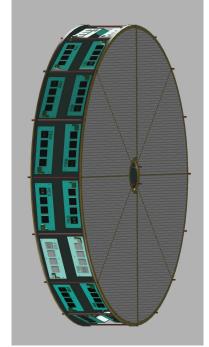

Detector Geometry: Envelope and Active Regions

MPGD Disk	Max Z Pos (cm)	Disk Outer Radius (cm)	Outer Active Reg. radius (cm)	Calculated Beam pipes radii (mm)	Offset (mm)	Disk Inner Radius (cm)	Inner Active Reg. radius (cm)
HD MPGD 2	163.5	50	45	55.8	22.5	9	10.5
HD MPGD 1	150.5	50	45	53.1	19.9	9	1.5
LD MPGD 1	-112.5	50	45	37.7	-3.1	4.5	6.0
LD MPGD 2	-122.5	50	45	39.2	-3.4	4.5	6.0

- Two couples of disks: Lepton/Hadron Disks
- The geometric envelope should include the electronics front-end boards
- 50 cm external radius/45 cm active region radius – including 5cm outer ring for services.
- Different internal hole dimensions due to divergent beam pipes: 4.5 cm (LD)/9 cm(HD)

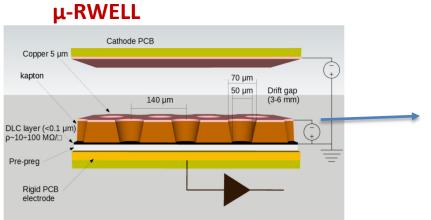


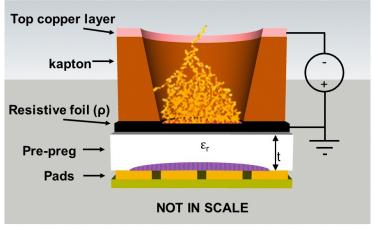

Endcap Detectors Integration in ePIC



The assigned envelope will include the detectors and the FEB electronics.

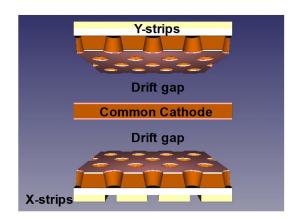
The disks will be attached together and to the support frame under design.





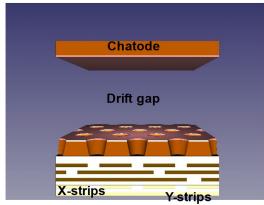
Detector Technology Choices

G. Bencivenni et al.; 2015_JINST_10_P02008


The μ -RWELL is a Resistive MPGD detector (Micro Pattern Gas Detector) Standard Gas mixture: Ar:CO₂:CF₄ 45:15:40 mixture (it also works with Ar:CO₂ «green» mixture) The device is composed of two elements:

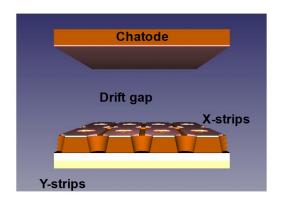
- drift/cathode PCB defining the gas gap ($5\mu m Cu$ layer on the bottom side)
- μ -RWELL_PCB (detector core) Multilayer circuit: Well Pattered Polyimide \oplus resistive film \oplus readout PCB The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap The resistive stage ensures the quenching of the spark amplitude

2-D Tracking layouts


N.2 u-RWELLS 1D (2\otimes1D)

October 2022 test beam

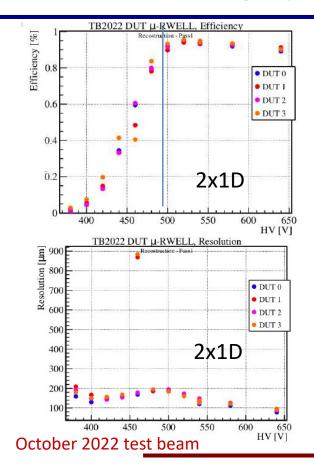
- 780 mm pitch
- 300 mm width
- 10 x 10 cm² active surface
- 128 channels

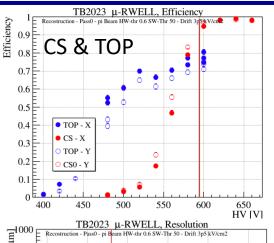

u-RWELL - Capacitive Sharing r/out

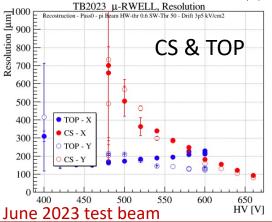
June 2023 test beam

- 1200 μm pitch
- $300 \mu m vs 1000 \mu m strips width$
- 10 x 10 cm² active surface
- 83 channels
- "Compass-like" strip configuration
- Capacitive sharing

u-RWELL TOP r/out




June 2023 test beam


- 780 μm pitch
- 300 μm width
- 10 x 10 cm² active surface
- 128 channels
- X –strips Top read-out
- Y strips standard read-out

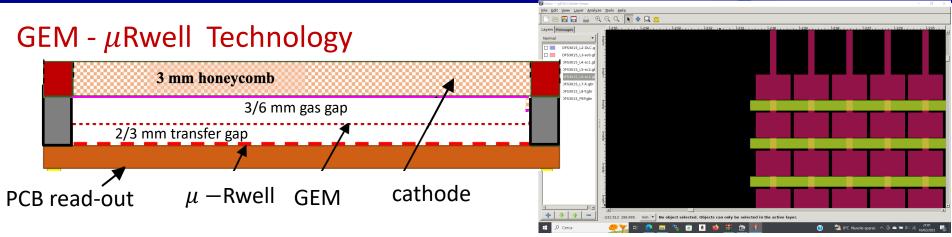
2-D Tracking layouts

1D pitch 0.78 mm

Reference performances:

- 96% efficiency
- 120 μm resolution

CS pitch 1.2mm


- Due to the charge spread the working point is shifted to high voltage/gain
- Spatial resolution improves at high gain reaching 150 μm with a strip pitch of 1.2 mm

Top-r/out pitch 0.78 mm

 low-voltage/gain operation but low efficiency level (80%) due to the geometrical dead zone on the segmented amplification stage

Detector Technology Choices: GEM+ μ Rwell

- 2D CS readout reduces the gain from 10^4 to 3-4 $10^3 \rightarrow$ the detector stability is put at risk
- GEM- μ Rwell hybrid configuration has been chosen to increase the gain in the 10 000 \div 20 000 range
- 2D strip read-out using a "COMPASS-like" scheme
- 500 μm pitch guarantees a spatial resolution better than 150 μm (no need of capacitive sharing))
- A gas gap lager than 3 mm is compatible with single detector efficiency larger than 96%

<u>μ-RWELL + GEM</u>

Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401-404

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

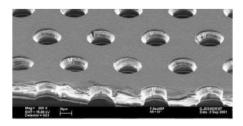
journal homepage: www.elsevier.com/locate/nima

Development of μ -RWELL detectors for the upgrade of the tracking system of CMD-3 detector

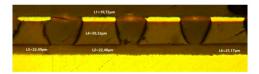
L. Shekhtman*, G. Fedotovich, A. Kozyrev, V. Kudryavtsev, T. Maltsev, A. Ruban Budker hutimus of Nuclear Physics, 630090, Novemberk, Russia
Novemberk Stam Umbersity, 6300090, Novemberk, Russia

ARTICLE INFO

Keywords: Tracking detectors Micro-RWELL Micro-pattern gas detectors

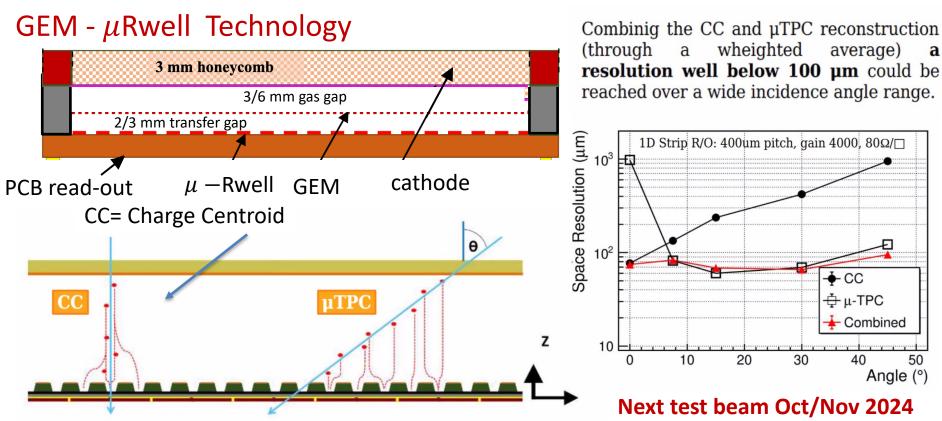

ABSTRACT

An upgrade of tracking system of Cryogenic Magnetic Detector (CMD-3) is proposed using microresistive WEIL technology. CMD-3 is a general purpose detector operating at the VEPP-2000 collider at Budker Institute of Nuclear Physics and intended for studies of light vector mesons in the energy range between 0.3 GeV and 2 GeV. The new subsystem consists of double-layer cylindrical detector and the end-cap discs. Two prototypes, micro-RWEIL and micro-RWEIL and emicro-RWEIL and emicr


L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401-404

Drift Gap: Shekhtman 3mm - LNF+Roma2 6mm

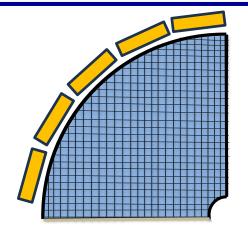
Transfer Gap: Shekhtman 3mm – LNF+Roma2 3mm



Developed for CMD3 upgrade disks (4 sectors 50×50cm²)

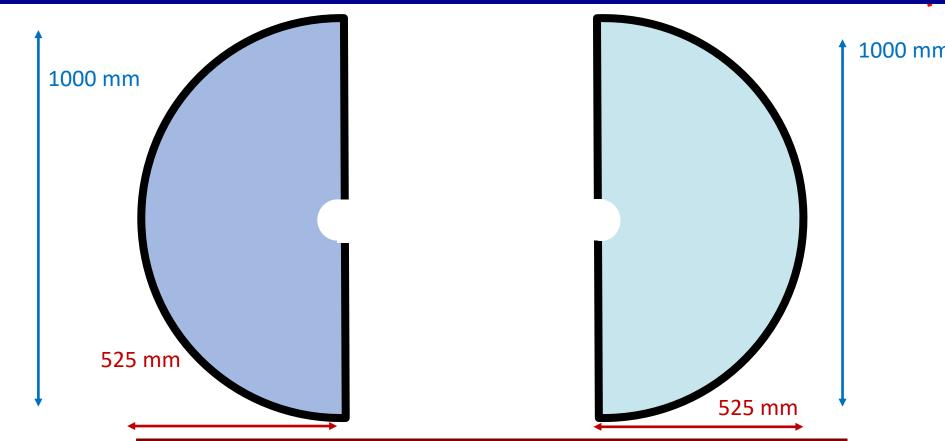
The GEM **must be** stretched: sizes larger than 50×50cm² could be critical (depending on the gas gaps size).

Detector Technology Choices: GEM+ μ Rwell+ μ TPC



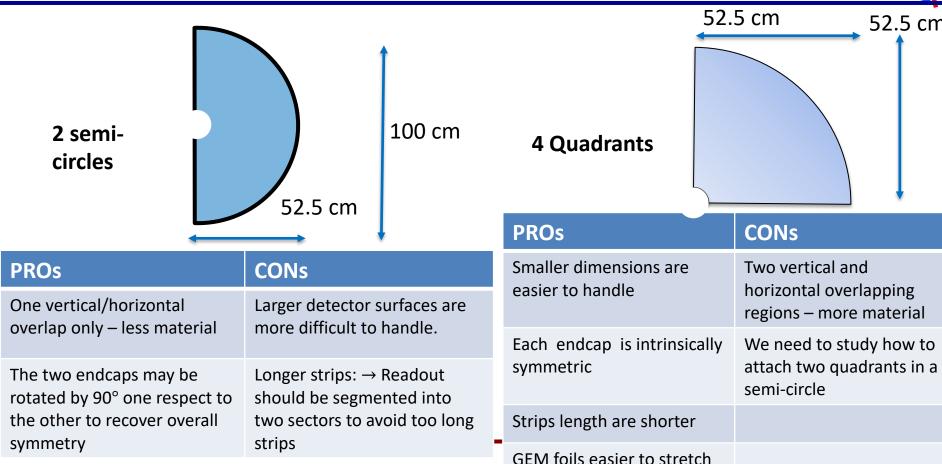
Detector Technology Choices: (X,Y) vs (R,φ) read-out

(X, Y) read-out geometry

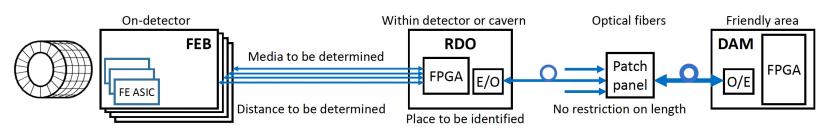

PROs	CONs
The strip length does not vary much along the active area	Alignment is critical
All readout FE hybrids may be located outside the active area	Routes to read-out connectors must be accurately studied

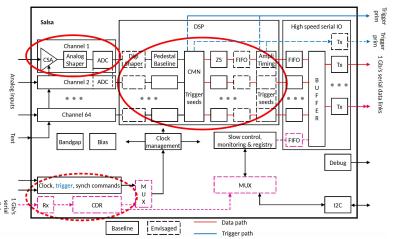
- (X, Y) readout is preferred vs (R, φ) no FEB on the active area
- 500 μm pitch \rightarrow better than 150 μm intrinsic position resolution
 - Strips routing details is being studied

Detector Technology Choices: Detector sectors overlap



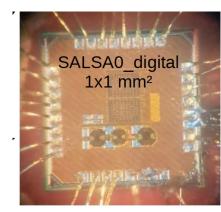
The two half disks will have 2 cm of active area overlap


ePIC Endcaps – open options



FEB – RDO – DAQ electronics

Preliminary design of SALSA


- FEB is based on new

 SALSA chip designed

 and produced by the

 Saclay/San Paulo group

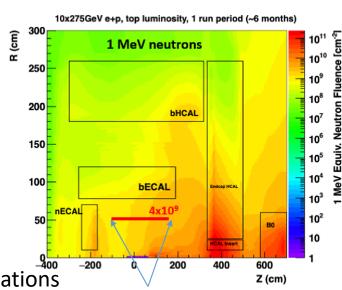
 for all MPGD detectors
- Specific FEB form factor must be designed to fit each detector requirements

More on Technical Performance Requirements

Rate Capability

Not critical ~ 1 kHz/cm² or less

Radiation Hardness


- Not critical for the detectors
- Important for FEBs and RDO electronics boards

Temperature Stability

- Not critical for the detector performances
- Detector calibration should consider gas pressure variations

- SALSA ASIC consumption ~ 15 mW/channel at 1.2V → 60 W/disk
- Air vs liquid cooling is under study at Saclay

INFN Involvement timeline

August 2023: Interest of INFN groups to contribute to the MPGD trackers

- 1 year time to make the final decision about the INFN responsibility of the endcap construction
- Joined DRD-1 and eRD108 communities

December 2023: Direct contact with ePIC management (Rolf Ent)

- ePIC/DOE management agreed that INFN takes the leadership of MPGD ECT
- eRD108 → PED project: 30 k\$ from DOE to provide a design by the end of 2024.

March 2024: Incremental Design and Safety Review (PDR)

- Detector technical choices and project design communicated to the management
- Very positive feedback

May 2024: MPGD ECT working group reinforced

- Interest expressed by Paolo Musico (INFN GE) and local RM TV digital electronic group to contribute to the FEB design
- Interest expressed by Temple University to contribute to the Lepton Disks construction
- Support from the local INFN Director: electronics workshop and clean room

Involved Institutions & Workforce

INFN Workforce:

Roma Tor Vergata

Coordinator: A. D'Angelo,

Detector Hardware and QA: E. Sidoretti (PhD) A. Fantini, L. Lanza, Post Doc

Simulation & Reconstruction: L. Lanza, A. Fantini, R. Di Salvo


FEB Electronics: R. Ammendola

Genova

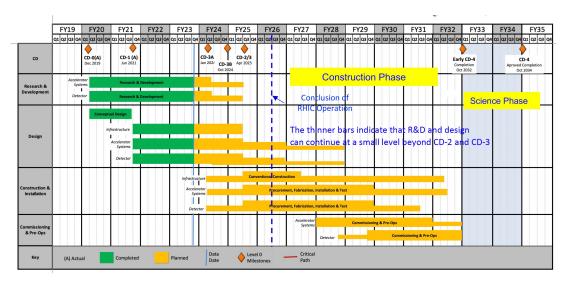
FEB Electronics: Paolo Musico, M. Battaglieri (streaming ro)

Catania

Simulation & Reconstruction: Mariagela Bondi'

The work will be performed in close connection with:

the group of Gianni Bencivenni @ INFN LNF and with the JLab detector group (Kondo Gnanvo, Seung Joon Lee)


INFN coordinates the GEM- μ Rwell MPGD ECT – for both the Hadron and Lepton Disks

- INFN will provide the Hadron Disks and related electronics as In-kind contributions
- Temple U. (Bernd Surrow, Matt Posik,) have expressed interest for the Lepton Disks.

Fabrication and Assembly Plans

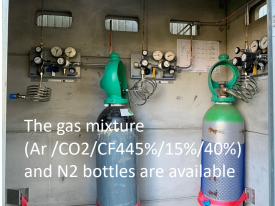
- Design by end of 2024
- 2025 2026 pre-production and Engineering Test Article
- 2027 2029 production & QA
- 2030 Commissioning & Installation

	DURATION			
START DATE	END DATE	DESCRIPTION	(years)	
3/1/24	12/31/24	Detectors Overall Design	<1	
1/1/25	12/31/26	Pre - Production	2	
1/1/27	31/12/29	Production & QA	3	
1/1/30	6/1/30	Commissioning & Installation	0.5	

Financial Plan

EIC_NET	INFN R	R&D Total R&D Tot YTD				INFN in-kind (kEU)						DoE funds (kEU)			TOT YTD		
Year	tracking	dRICH	uRWELL	SRO			Year	SVT	d	IRICH	uRWELL	то	Т	eRD	PED	Construction	
2019	0	19	0	5,5	24,5	24,5	2019							58,9	0	0	58,9
2020	0	33,5	0	6,5	40	64,5	2020							53,4	0	0	112,3
2021	0	72	0	6	78	142,5	2021							58,8	0	0	171,1
2022	0	149,5	0	0	149,5	292	2022							244	0	0	415,1
2023	0	198,5	Q	6	204,5	496,5	2023							360	45,5	0	820,6
2024	15	349	5	15	384	880,5	2024							373,5	87	0	1281,1
ePIC								INFN	In-Ki	ind (kEU	ı) <mark>/</mark>						
							Year	SVT	d	IRICH	uRWELL	тф	Т				
2025	60	200	20		280		2025		0	450	30		480				
2026	40	100	30		170		2026	1	80	1300	40		1520				
2027					100		2027	1	80	1400	200		1780				
2028			, and the second				2028	2	70	1450	100		1820				
2029							2029	2	20	800	80		1100				
2030							2030		50	400	50		500				
								9	900	5800	500		7200				
				Total IKC (EU)		(EU)	7200										
								Eol T	arget	t (total)	7200						

50 k€ R&D + 500 k€ core


Infrastructures – synergies with JLAB12

2025 RM TV Activity

- Design a first Engineering Test Article
 D-shaped vs 4 quadrants prototypes development to assess the chosen solution
- Produce and Test small prototypes with μ TPC read-out scheme
- Contribute to the TDR

2025 Roma TV Financial Requests. (2.6 FTE)

Capitolo	Motivazione	K Euro			
Missioni	Test Beam + coll. meetings	18			
Consumo	Miscela di gas e minuteria	10			
Inventariabile	Schede CAEN Canali HV	10			
Apparati	Prototipi	30			

Summary

In the last year INFN has gained the leadership of the MPGD endcap trackers (ECT)

- The role has been recognized by the DOE and ePIC managements
- The main technological choices have been indicated

Detector technology

2D – readout challenges and test beam results Hybrid GEM- μ Rwell technology & μ TPC readout (X,Y) readout – 500 μ m pitch

INFN Involvement

Fabrication and Assembly Plans Timeline Workforce Financial Plan

Summary

Back-up Slides

The μ-RWELL (Micro Resistive Well Detector)

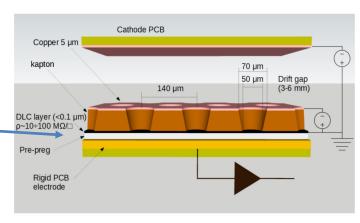
The μ -RWELL is a Resistive MPGD detector (Micro Pattern Gas Detector)

Used Gas: $Ar:CO_2:CF_4$ 45:15:40 mixture (it also works with $Ar:CO_2$ «green» mixture)

The device is composed of two elements:

- drift/cathode PCB defining the gas gap ($5\mu m\ Cu$ layer on the bottom side)
- μ-RWELL_PCB (detector core)
 - \triangleright Multilayer circuit: Well Pattered Polyimide \oplus resistive film \oplus readout PCB

Amplification stage: \rightarrow 50 μm thick Kapton (Apical®) foil With a 5 μm Cu layer on the top side


Resistive stage: → DLC (*Diamond-Like-Carbon*) film sputtered on the bottom side of the polyimide foil _____

Surface resistivity: $\rho = 10 \div 100 \, M\Omega/\Box$

The resistive layer strongly suppresses the transition from streamer to spark

=> Allows to achieve **large gains** (> 10⁴), without affecting the capability to operate under **high particle fluxes**

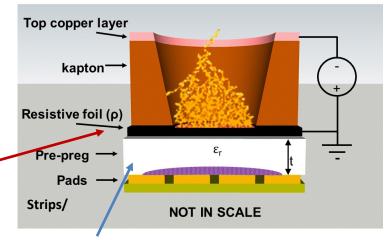
G. Bencivenni et al.; 2015_JINST_10_P02008

The μ-RWELL principle of operation

The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap

The charge induced on the resistive layer is spread with a time constant:

$$\tau \sim \rho \times c$$

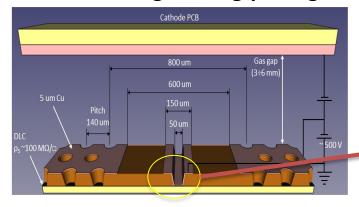

[M.S. Dixit et al., NIMA 566 (2006) 281]:

 $\rho \rightarrow$ the DLC surface resistivity

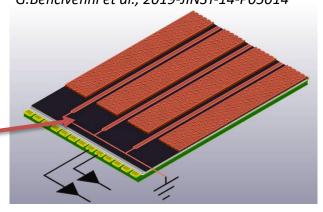
 $c \rightarrow$ the capacitance (per unit area), depending on the distance between the DLC and the readout plane

$$C = \varepsilon_0 \times \varepsilon_r \times \frac{s}{t} = 120 \ pF \times L(m) - w = 0.2 \ mm, \ p = 0.4 \ mm$$
 strip read-out

- The resistive stage ensures the quenching of the spark amplitude
- As a drawback, the capability to stand high particle fluxes is reduced, but appropriate grounding schemes of the resistive layer solves this problem



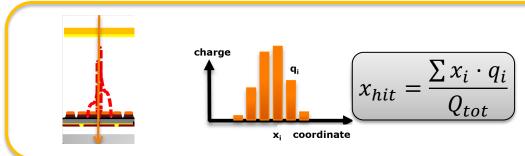
The μ-RWELL Technology



Studies have been focused on the DLC grounding layout to increase the rate capability while maintaining a safe resistivity => The solution is to reduce as much as possible the current path towards the ground connection introducing a high density "grounding network" on the resistive stage of the detector

PEP - Patterning-Etching-plating

The micro-RWELL layouts for high particle rate, G.Bencivenni et al., 2019-JINST-14-P05014



The active area is discontinued by grooves that uncover the DLC; then a copper plating, carefully separated from the copper in the active sectors, is disposed to connect the DLC to the ground.

A small dead zone on the amplification stage must be introduced for high stability operation

The μ-RWELL Technology

Charge Centroid reconstruction method

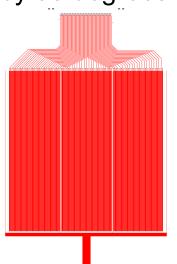
The track position is determined as a weighted average of fired strips

GOOD FOR ORTHOGONAL TRACKS

FOR INCLINED TRACKS &/or HIGH B FIELD

the Charge Centroid method gives a very broad spatial distribution on the anode-strip plane.

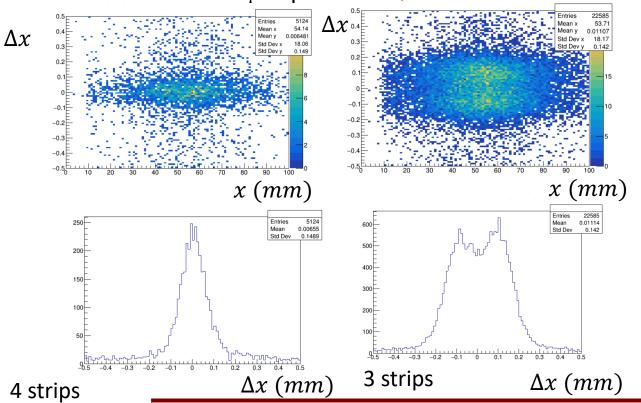
μTPC reconstruction

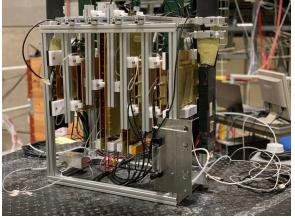

The spatial resolution is strongly dependent on the impinging angle of the track \rightarrow A non-uniform resolution in the solid angle covered by the apparatus \rightarrow Large systematical errors.

2D – readout: step by step approach

1. The first prototype was a set of 2x1D detectors each having the following specs, rotated by 90 degrees: 5-19 October 2022

- 780 μm pitch
- 300 μm width
- 10 x 10 cm² active surfa
- 128 channels





Test Beam: SPS North Area H8

2D – readout: 780 μm pitch-300 μm width - 10 x 10 cm² active surface

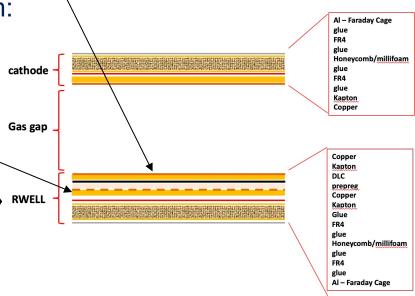
Increasing the pitch read-out the resolution is strongly affected by the number of strips among which the charge is distributed

2D – readout: step by step approach

1. 2x1D detectors.

The 2022/2023 tests show that the optimal pitch to obtain 100 μm resolution is the following:

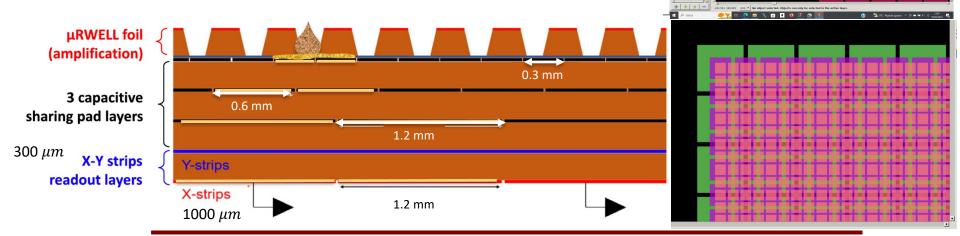
- **400** μm pitch
- $300 \mu m$ width

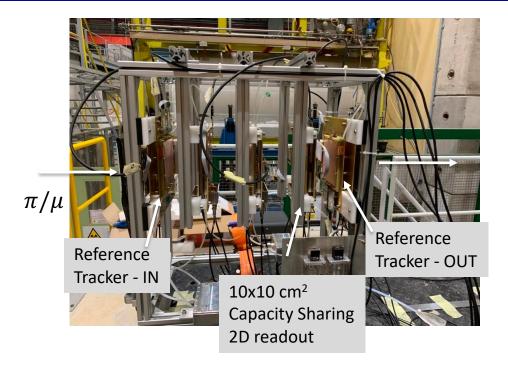

2D – readout: step by step approach

2. The second prototype reads the 2-nd coordinate on the "top" copper layer

Same readout geometry as in the bottom:

- 780 μm pitch
- 300 μm width
- 10 x 10 cm² active surface
- 128 channels


The effect charge collection on the «top» RWELL layer is the object of investigation.


2D – **readout**: step by step approach

- 3. The third prototype reads both coordinates on the bottom in "COMPASS-like" strips configuration with capacity sharing read-out:
- 1200 μm pitch
- 300 μm vs 1000 μm strips width
- 10 x 10 cm² active surface
- 83 channels

On-going Activities

TEST BEAM at CERN SPS North Area H8: 16 - 30 October 2024

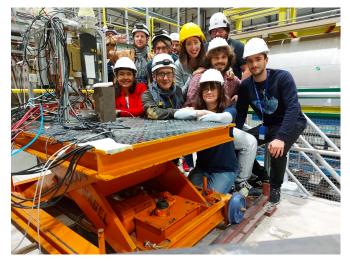
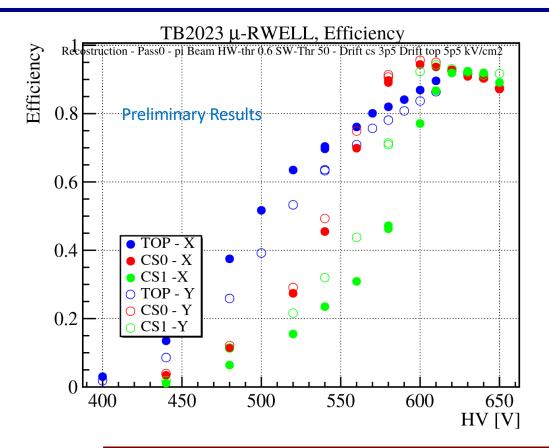
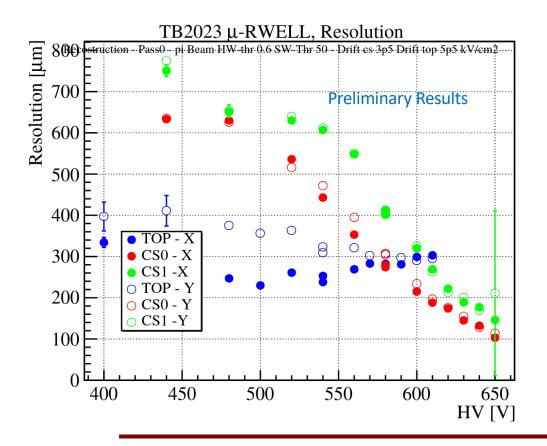



Photo taken during 5 – 19 October 2022 test beam

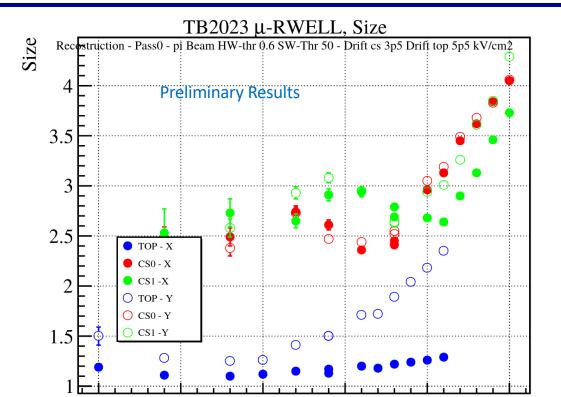
Preliminary results from June test beam



Efficiency

- CS readout reaches a plateau at higher HV values than standard readout scheme.
- TOP readout is not yet at plateau at 600 V
 (HV was chosen not to be raised to higher values)

Preliminary results from June test beam



Resolution

- CS readout reaches 100 μm resolution at highest HV values (starting from 1200 μm pitch)
- TOP readout resolution is fixed at 250-300 μm (pitch is 780 μm)

Preliminary results from June test beam

500

550

400

450

Cluster Size

- CS readout Cluster Size is not lower than 2.5 strips and increases to 4 at higher HV.
- higher cluster size → better resolution
- TOP readout cluster size is fixed at 1.3
- Bottom readout cluster size increases from 1.5 to 2.3 with HV

650 HV [V]

600

Summary of results from June test beam

TOP read-out

- The Top-readout efficiency is 80-82% (compatible with the geometrical acceptance of 87%).
- The efficiency does not show the plateau below 600V HV. The signal produced does not suffer from sharing between the 2 readout views.
- Spatial resolution is 250-350 μm, compatible with pitch/V12

Capacity Sharing read-out

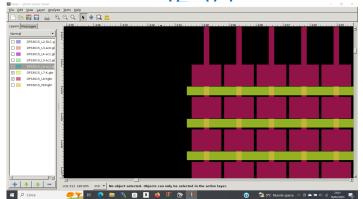
- The CS shows an efficiency plateau at 92-93% as a function of HV from 600 to 660V (too high!)
- The charge spread allows a very good spatial resolution, <100 μm (at high HV).
- The average cluster size increases with HV.

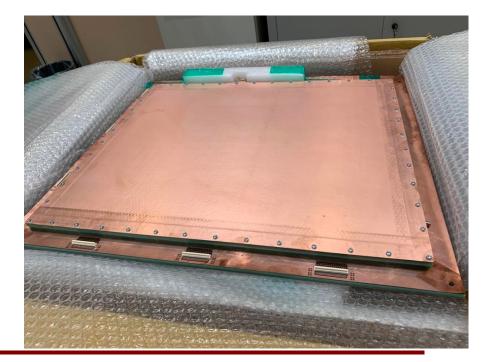
FUTURE ACIVITIES

2D read-out optimization:

• The CS readout could be improved by eliminating one layer of sharing, going from the actual 3 capacitive ones (0.3 - 0.6 - 1.2 mm) down to 2 (0.4 - 0.8 mm).

Large Area Detector prototype


 A first large area 40 x 46 cm² detector has been delivered to Roma Tor Vergata and is being characterized in collaboration with the LNF group lead by Gianni


Bencivenni

1200 μm pitch

 $300 \, \mu m \, vs \, 1000 \mu m$ strips

6 mm gas gap

Possible collaboration with EIC MPDG group

INFN Manpower:

- Roma Tor Vergata: A. D'Angelo (PO), R. Di Salvo (I ric), A. Fantini (RU), L. Lanza (RTDa), E. Sidoretti (PhD)
- **Genova:** M. Battaglieri (DR), Paolo Musico (INFN) -> Readout electronics (SALSA)
- Roma 1: Evaristo Cisbani (GEM expert) Catania: Mariagela Bondi'
- The work would be performed in close connection with the group of Gianni Bencivenni @ LNF and with the JLab detector group (Kondo Gnanvo)

Strategy towards the integration in the MPDG Community

- We have explored the space for INFN in the EIC MPGD working group:
 - We joined the eRD108 call for 2024 FY for the R&D on endcap disks
 - We participate to the EIC MPGD weekly meetings
- We have explored the space for the INFN Roma TV group to DRD-1
 - We have submitted the request to join the DRD-1 gaseous detectors WP1 – T2
 - We are in contact with the INFN reference persons

The eRD108 Consortium

July 8, 2023

The eRD108 Consortium

Project ID: eRD108

Project Name: Development of EIC ePIC MPGD Trackers.

Brookhaven National Laboratory (BNL): Craig Woody CEA Saclay: Francesco Bossù, Maxence Vandenbroucke Florida Institute of Technology (FIT): Marcus Hohlmann

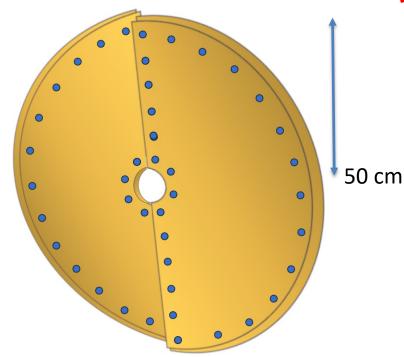
Istituto Nazionale di Fisica Nucleare (INFN Roma Tor Vergata): Annalisa D'Angelo University of Virginia (UVa): Huong Nguyen, Nilanga Liyanage Temple University (TU): Matt Posik, Bernd Surrow

Thomas Jefferson National Accelerator Facility (JLab): Kondo Gnanvo

Vanderbilt University (VU): Sourav Tarafdar Project Members:

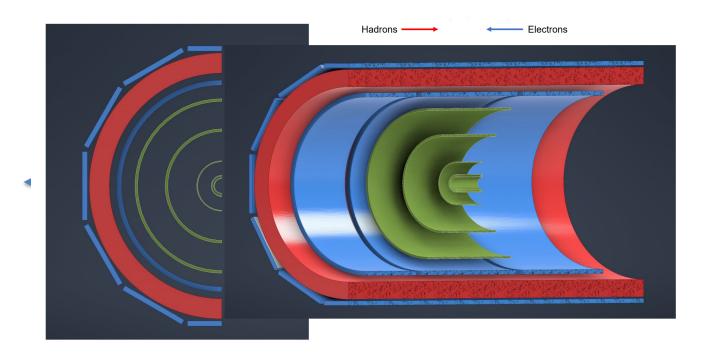
BNL: B. Azmoun, A. Kiselev, M. Purschke, C. Woody
CEA Saclay; F. Bossia, A. Francisco, M. Vandenbroucke
FIT: M. Hohlmann, P. Iapozzuto
INFN: A. D'Angelo, A. Fantini, B. Benkel
JLab: K. Gnanvo
TU: M. Posik, B. Surrow
UVa: H. Nguyen, N. Liyanage

VU: S. Tarafdar, V. Greene, J. Velkovska


Contact Person: Kondo Gnanvo; kagnanvo@ilab.org

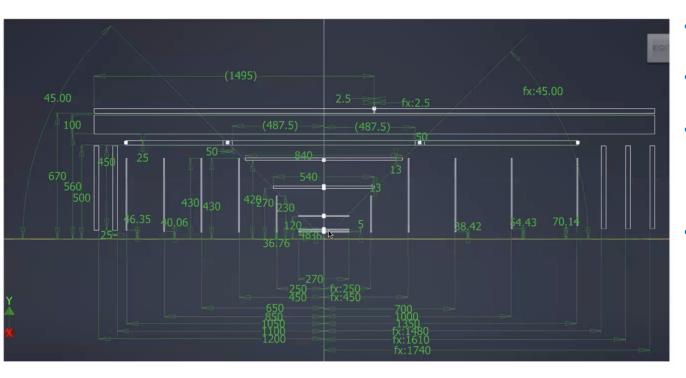
Large Area Detector Development for EIC

R&D Studies for EIC disks within eRD108 (in collaboration with TU)


- readout segmentation: radius and azimuthal coordinates vs. (X,Y) geometry;
- reduced number of readout channels: capacity sharing vs. traditional charge collection;
- **2D-readout optimization:** charge sharing among 2 readout layers vs. two 1D readout layers;
- performance impact of electronics position
 layout: on-detector vs. off-detector using flex cabling.

Conceptual design example for an MPGD endcap disk with stacked overlapping half-disks to maximize acceptance.

The Latest Configuration of ePIC detector tracking eP



re-inforced role of MPGD

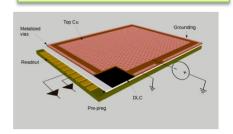
The Latest Configuration of ePIC detector tracking

- Two forward discs 50 cm radius
- Two backward discs50 cm radius
- Cylinder inside the ToF, segmented in three longitudinal sectors

 56 cm radius
- Barrel inside the DIRC: same DIRC segmentation in planar tiles, divided into two longitudinal sectors

67 cm radius

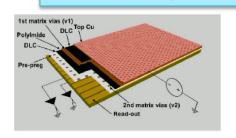
re-inforced role of MPGD


The μ-RWELL Developments: High-rate capability and improved grounding scheme e

time

Studies have been focused on the DLC grounding layout to increase the rate capability while maintaining a safe resistivity => The solution is to reduce as much as possible the current path towards the ground connection introducing a high density "grounding network" on the resistive stage of the detector

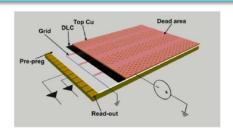
R&D on low-rate layout



SRL_Single-Resistive-Layer the DLC grounding is provided all around the active area.

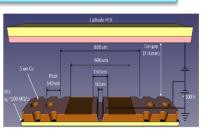
detection efficiency:

 $\frac{G}{G_0} \sim 1 \ up \ to \ 35 \ kHz/cm^2$


R&D on high-rate layout (grounding network also in the active area)

DRL-DoubleResistive Layer

Two DLC layers connected by a matrix of conductive vias and grounded by a further matrix of vias to the readout electrodes


$$\frac{G}{G_0}$$
 > 0.90 up to 3MHz/ cm²

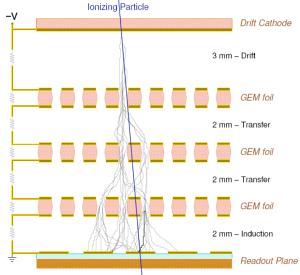
SG -Silver Grid

a SRL with a 2-D grounding conductive strip lines realized on the DLC layer.

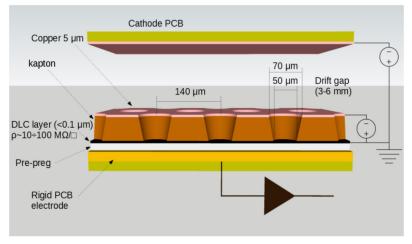
$$\frac{G}{G_0} > 0.90 \text{ up to } 20MHz/\text{ cm}^2$$

PEP-Patterning-Etching-plating

the grounding grid of the DLC is patterned by etching a groove in the base material from the top

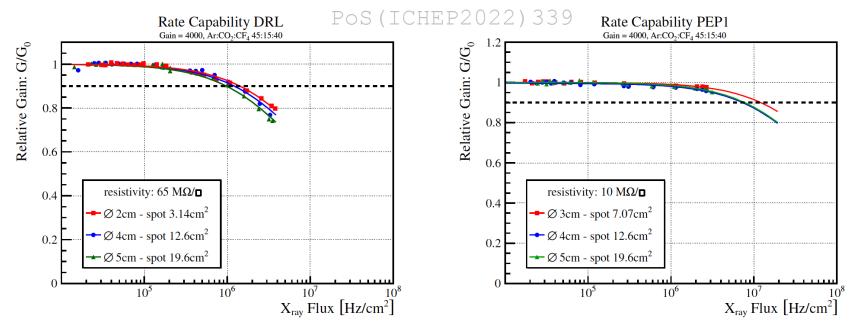

$$\frac{G}{G_0} > 0.90 \text{ up to } 20 \text{MHz/cm}^2$$

The CLAS12 DC TRACKING UPGRADE


Two MPGD detector technologies have been discussed, triple-GEM and μ -RWELL

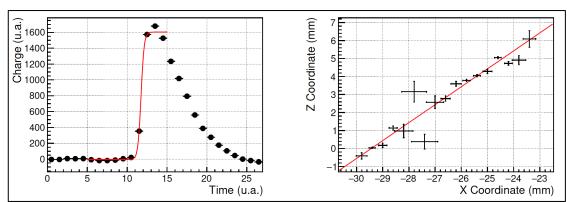
Large area triple-GEM detectors have been used in experiments (PRad, SBS, ...).

F. Sauli, Nucl. Instr. and Meth. A386 (1997) 531


- μ-RWELL technology is new, only small prototypes have been tested:
 - → will require extensive R&D.
- μ-RWELL detector is best suited for CLAS12:
 - low material budget, easy to build, less support structures in the active volume of the detector.

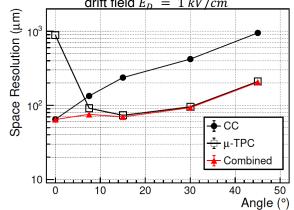
G. Bencivenni et al.; 2015_JINST_10_P02008

The High-Rate solution: PEP


Rate capability measured with 5.9 keV X-rays with Double Layer μ -RWELL (DRL) and with PEP

NB: a photon flux around 1 MHz/cm², which corresponds to a m.i.p. rate of 3 MHz/cm².

The μ -RWELL Development for Large Area Detectors : Spatial resolution $\rightarrow \mu$ TPC reconstruction


A possible solution : $\mu TPC reconstruction$

- > The electrons created by the ionizing particle drift towards the amplification region
- > In the μTPC mode from the knowledge of the drift time and the measurement of the arrival time of electrons, the track segment in the gas gap is reconstructed
- > The fit of the analog signal gives the arrival time of drifting electrons.
- \triangleright By the knowledge of **the drift velocity,** the 3D trajectory of th ionizing particle in the **drift gap** is reconstructed.

Integrated charge as a function of the sampling time

Example of a track reconstruction using the TPC algorithm.

Comparison of the **CC** and μTPC reconstruction algorithms in function of the impinging angle