dRICH Collaboration

Compact cost-effective solution for particle identification in the high-energy endcap at EIC

Forward particle detection

Hadron ID in the extended 3-50 GeV/c interval

Support electron ID up to 15 GeV/c

Main challenges:

Cover wide momentum range 3 - 50 GeV/c -> dual radiator
Work in high (~ 1T) magnetic field -> SiPM
Fit in a quite limited (for a gas RICH) space -> curved detector

Essential for semi-inclusive physics due to absence of kinematics constraints at event-level

EIC Forward RICH

η	Nomenclature	Electrons and Photons			π/K/p	
		Resolution $\sigma_{\rm E}$ /E	PID	Min E Photon	p-Range	Separation
1.0 to 1.5	Forward Detectors	2%/E ⊕ (4*-12)%/√E ⊕ 2%	3σ e/ π up to 15 GeV/c	50 MeV	≤ 50 GeV/c	≥ 3σ
1.5 to 2.0						
2.0 to 2.5						
2.5 to 3.0						
3.0 to 3.5						

INFN Background

CLAS12 RICH COMPASS RICH ALICE HMPID

HERMES RICH DARKSIDE ALCOR

dRICH Sub-System Organization

6.10.04 Particle Identification Level-3		CAM from Project			
6.10.04.03 dRICH Level-4		CAM from Project + DSTC from EPIC (M. Contalbrigo)			
₽		Work packages lead from EPIC Possible work packages not yet ac			
Photo-Detector	Level-5	R. Preghenella, INFN-BO, INFN-FE, INFN-CS, INFN-SA, INFN-CT, INFN-TS, NISER			
Front-end Asics	Level-5	F. Cossio, INFN-TO, INFN-BO	Detector box	Level-5	
Data-acquisition	Level-5	P. Antonioli, INFN-BO, INFN-FE	Gas purging	Level-5	
Mechanics	Level-5	A. Saputi, INFN-FE, INFN-CT, INFN-TS, JLAB, BNL	Cooling	Level-5	
Gas radiator	Level-5	F. Tessarotto, INFN-TS, BNL	Slow Control	Level-5	
Mirror	Level-5	A. Vossen, DUKE, JLAB, NFN-FE, RICH Consortium	Interlock	Level-5	
Aerogel Radiator	Level-5	G. Volpe, INFN-BA, INFN-FE, RICH Consortium	Alignment	Level-5	
High-Pressure	Level-5	S. Dalla Torre, INFN-TS, INFN-FE, INFN-LNS	Power Supply	Level-5	
Simulation		C. Chatterjee, INFN-TS, DUKE, INFN-FE, RICH Consort.		Level-5	

ePIC dRICH

Acceptance: defined by pipe and barrel ecal

minimize material budget with the use of composite materials

Interferences: material budget concentrated beheind the barrel ecal and its support ring readout electronics design in order to minimize the detector box volume

dRICH Photo-Detector

Photon Detector Unit (PDU):

Compact to minimize space

- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
 - 4x ALCOR chip (ToT discrimination)
 - 4 x Annealing Circuitry
- 1x Read-Out Board (RDO)
 - 1x Cooling plate (< -30 C)

Active area is shaped to resemble the focal surface and best exploits the focalization

Detector box:

Shaped to fit the space

Quartz window

Cooling for sensors and electronics

Power distributing patch panel

Heat insulation

Readout Components

SiPM carrier board with 256 channels and flex connector circuits.

2x ALCOR front-end card and the adapter board

MasterLogic card to control SiPM bias voltage & monitoring service

ALCORv64 digitazing chip

Readout Board to configure and connet to the back-end

SiPM Detection Plane

Photon Detection Unit Streaming readout mode

4x SiPM matrix arrays (256 channels) flex PCB cooling stack (water-cooled Peltier) minicrate with fron-end electronics (ALCOR ASIC inside)

Readout Box 8 PDUs, 2048 channels

Prototype Working Pooint -40:-20 C

SiPM Detector

Detector Mounting

Tracking GEM+SciFi

Test-beam Program

Successful campaign:

Mixed hadron beam 2-11 GeV/c

Various aerogel samples (1.020-1.026)

Two gas radiators (C_2F_6, C_4F_{10})

Two SiPM working points (-40 C and -20 C)

Two tracking systems (GEM & SciFi)

Many optical fiters

Beam line Cherenkov tagging

Temperature monitor

Aerogel + C₂F₆ radiators, positve beam, 8 GeV/c

C₄F₁₀ radiator, negative beam, 11 GeV/c

Streaming Data-Acquisition

Goals: Maximise modularity (detector shaping) and capability (data stream)

DAM Hierarchy: Maximum data rate capability till DAM-L1

Big data reduction at DAM-L1 with external input (2 μs latency interaction tagger)

DAM-L2 data aggregation allows for effective data-reduction algorithms

Opportunity for online ML applications (involving INFN specific expertise)

Radiators

Aerogel characterization & optimization (synergy with ALICE3)

Gas characterization & optimization (synergy with AMBER/CERN)

Deuterium UV lamp, Monochromator system, 1.6 m column for gas transparency measurement

Gas system

Performance Optimization

dRICH performance is studied within the ePIC simulation framework (with tracking resolution and magnetic bending)

dRICH Construction Items

	INFN	Shared	DOE
Mechanics	Detector box (FE, LNS)	Vessel (FE, LNS) Insulation (TS)	Aerogel & mirror supports (JLab) Installation tools (JLab/BNL
Photo-detector	Sensors (BO,CS,SA,CT,TS) PDU (cool plate) (BO)		
Readout	ALCOR (TO) FEB (TO) Master Panel (FE)		
DAQ	RDO (BO)	Data stream (GE, RM1, RM2)	DAM (BNL)
Radiators	Aerogel (BA)		Gas (BNL) Aerogel QA (Temple, BNL)
Mirror			Mirror (JLab/Duke) Coating (Duke)
Services			Gas Plant (BNL) Cooling Plant (BNL) Power Plant (BNL)
Monitors	Gas monitor (TS)	Slow Control/Interlock LED+Laser	

INFN Engagement

BO: new space under discussion (ex Tier1) & elec. + mech. support

CS: lab (+new) space

TS: lab space & tech. support

TO: micro-electronic workshop

LNS & CT: tech. support

RM1 & RM2: tech support

GE: lab space & electr. support

SA: lab (+new) space & tech. support

BA: lab (+new) space & tech. support

FE: lab space, clean room & elec. + mech. support

Quality Assurance

Sensors: INFN (CS/SA/CT) – TS – BO

Mirror: JLab – Duke – INFN (FE)

INFN Funding Profile

DOE granted the EIC dRICH R&D program (eRD102) about 150 keu/yr in the last three years

Assumptions: - 6 months delay of CD3 (now on spring 2026)

- no delay of installation (now on Oct 30: unlikely)
- possibility to split the major procurements in batches/years

