CMOS-LGAD

Plans before/during/after TB summer 2024

Lab - characterisation

- Passive structures tests with probe station (A2 and A1)
 - ► C(V) and I(V) to be checked with Trento measurements
- Bonding of MadPix of 4 TestBoards (4 central pixels):
 - 1. 3 with gain
 - 2. 1 No Gain -> Now in Bologna
- MadPix tests flow:
 - 1. Bonding of A2
 - 2. I(V) curves with no resistor for TP
 - 3. Bonding of A1
 - 4. I(V) curves with no resistor for TP
 - 5. Mounting of TP resistor
 - 6. Test of the electronics
 - 7. Sr90/laser analysis of the most central pixel

Operating conditions

- Itop(Vback)
 - ▶ Vback min at which Itop reaches the minimum -> V depletion
- Iback(Vback)
- ► Vback max at which Itop grows exponentially -> V punch-through Measured at a starting Vtop given by the passive structures (Vtop>20) From Vback found in the previous range:
- ► Itop(Vtop)
 - Start point of gain
- ➤ With laser measurements -> Depletion and Gain

TB June-July 24

- Acquisition with oscilloscope
 - Test of the 4 boards
 - 2/1 matrices per board
 - 3 most central pixels + LGAD
 - ► HV scan -> 3 voltages at minimum, 1 near breakdown
- Acquisition with Liroc+picoTDC
 - 1 board
 - 1 matrix
 - ▶ 4 pixels + LGAD
 - HV scan -> 2 voltages
 - ► Threshold scan -> 3 Values

6 days

24 runs, 5 hours per run,

4 long alignments (2h),

4 short alignments (1h)

2 days

6 runs, 5 hours per run

Bonus

LVDS 1.2 to LVDS 0.9

- Acquisition with Accrocchio+picoTDC
 - ▶ 1 board
 - 1 matrix
 - ▶ 4 pixels + LGAD
 - ► HV scan -> 1 voltages
 - ► Threshold scan -> 3 Values
- During the CMOS-LGAD acquisition, 2 out of 4 planes are used
- ► SiPM test is possible on picoTDC (LGAD + SiPM or SiPM+SiPM)
- Need of an external trigger for PicoTDC

1 day

3 runs, 5 hours per run

After TB June-July 24

Jitter of MadPix with laser

Conclusions

- Fast test campaign -> working point of the sensor
- ► Test Beam -> 8/9 days are needed with two plane of the telescope
- Missing measurements with laser

TO DO

- Accrocchio
- Fast analysis framework for almost real time timing resolution with oscilloscope