Astrofisica

HIERARCHICAL BLACK HOLE MERGERS: A MULTI-BAND OPPORTUNITY FOR GRAVITATIONAL WAVES

by Giacomo Fragione (Northwest University, Evanston (Illinois) USA)

Europe/Rome
Aula Conversi (Dip. di Fisica - edificio G. Marconi)

Aula Conversi

Dip. di Fisica - edificio G. Marconi

Description

With about a hundred binary black hole (BBH) mergers detected via gravitational wave emission, our understanding of the darkest objects in the Universe has seen unparalleled steps forward compared to previous decades. While most of the events are expected to consist of first-generation BHs formed from the collapse of massive stars, others might be of a second or higher generation, containing the remnants of previous BH mergers. A fundamental limit for hierarchical mergers comes from the recoil kick imparted to merger remnants, which could result in the ejection from the host star cluster. However, hierarchical mergers can build up massive BHs and even form intermediate-mass black holes if the host cluster is massive and dense enough, as in nuclear star clusters and the most massive globular clusters. With their distinctive signatures of higher masses and spins, hierarchical mergers offer an unprecedented opportunity to learn about the densest systems in our Universe and to shed light on the elusive population of intermediate-mass black holes. The next years may bring hundreds of detections from hierarchical mergers with multi-band events chirping from space-based to ground-based detectors, promising a spectacular range of new science from stellar evolution to cosmology.

Organised by

Roberto Capuzzo Dolcetta