Fisica statistica

Dynamics, fractal geometry and the exponents of the Kardar-Parisi-Zhang equation”

by Fernando A. Oliveira (University of Brasilia Dept. of Physics)

Europe/Rome
Aula Conversi (Dip di Fisica - Edificio G. Marconi)

Aula Conversi

Dip di Fisica - Edificio G. Marconi

Description

The KPZ equation [1] is connected to a large number of processes, such as atomic deposition, evolution of bacterial colonies, the direct polymer model, the weakly asymmetric simple exclusion process, the totally asymmetric ex- clusion process, direct d-mer diffusion, fire propagation, turbulent liquid- crystal, spin dynamics, polymer deposition in semiconductors, and etching [2]. We present a short review of the field, with some modern problems and perspectives. We discuss as well how a new interpretation of the fluctuation- dissipation theorem [3] allows us to give a solution for the KPZ exponents [4]. [1] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 9, 889 (1986). [2] B. A. Mello, A. S. Chaves, and F. A. Oliveira, Phys. Rev. E 63, 041113 (2001). — E. A. Rodrigues, B. A. Mello, and F. A. Oliveira, J. Phys. A 48, 035001 (2015). — W. S. Alves, E. A. Rodrigues, H. A. Fernandes, B. A. Mello, F. A. Oliveira and I. V. L. Costa, Phys. Rev. E 94, 042119 (2016). — W. R. Gomes, A. L. A. Penna and F. A. Oliveira, Phys. Rev. E 100 02101 (2019). [3] M. S. Gomes-Filho, and F. A. Oliveira, EPL 133 10001 (2021) — P. R. H. dos Anjos, W. S. Alves, M. S. Gomes-Filho, D. L. Azevedo and F. A. Oliveira, Frontiers in Physics 9 (https://doi.org/10.3389/fphy.2021.741590), 741590 (2021). [4] M. S. Gomes-Filho, A. L. A. Penna and F. A. Oliveira, Results in Physics 26, 26 104435 (2021)

Organised by

A. Petri