DS-20k (plan C): Simulation of neutrons from Hall C walls

Ludovico Luzzi (CIEMAT)

Strategy

- **GOAL:** Estimate neutrons background from walls of the Hall C at LNGS

Simulation divided in 2 subsequent steps, to speed up simulation:

- Step 1:
- 1. Neutrons emitted with an external generator around the cryostat, 10.4 x 10.4 x 10.4 m cube
- 2. Isotropic emission from cube surface, directed inward
- 3. Initial energy follows a spectrum from MC simulations (https://doi.org/10.1016/j.astropartphys.2004.07.005)
- 4. Stop and tag neutrons reaching the vessel around TPC (save position, direction and kinetic energy)
- Step 2:
- 1. Propagate tagged neutrons in the whole geometry
- 2. Tag neutrons depositing energy in the TPC
- 3. Apply TPC and veto cuts

Neutron flux from simulations

(alpha,n) + spontaneous fission Total flux = $(2.26 \pm 0.49)e-6$ n/cm2/s (all inward)

Time (10 y) = 3.15e8 s Surface = 6.48e6 cm2

Total neutrons after 10 y exposure = flux * time * surface = $(4.63\pm1)e9$

https://doi.org/10.1016/j.astropartphys.2004.07.005

Analysis

First step:

- Number of initial neutrons N = 5.6e9 (12.2 y)
- hitting the vessel n = 682011
- probability to hit the vessel = n/N = 1.21e-4 (to be compared to 8.7e-3 from the foam)

Second step:

- To increase statistics each event at vessel is propagated 910 times \rightarrow 11065 years data taking
- Events depositing energy in the TPC n1 = 1.96e8
- probability to deposit in the TPC = n1/(N*910) = 3.85e-5

Analysis

CUTS:

- just 1 cluster deposited in the TPC
- 2. in TPC fiducial volume (regular octagon with L = 120.5 cm, h = 200 cm)
- 3. NR-like
- deposited energy in the TPC by a cluster in [30, 200] keV
- 5. deposited energy in the TPC by gamma rays < 50 keV
- 6. deposited energy in the TPC by inelastic recoil < 10 keV
- 7. energy deposited in the veto buffer < 200 keV

Number of initial neutrons N = 5.6e9n probability to survive in 1106.5 exposures = $(26 \pm 5.1 \pm 5.6)/(N*910) = 5.1e-12$

bkg = $(26 \pm 5.1 \pm 5.6)/1106.5 =$ (23 ± 4.6 ± 5.1)e-3 neutrons / exposure