Thirty-two years ago a report about the measurement of unusual, so-called teraelectronvolt signal from the Crab Nebula captured the attention of the world scientific community. The authors reported a flux of so-called gamma-ray photons, where each carried an incredible amount of energy, exceeding that of the well-known X-rays by billion times. How and in which processes the nature managed to pack such a huge energy content into single photons remained a mystery for the coming years. Researchers used for observations a special technique and instrumentation dubbed as imaging atmospheric Cherenkov telescopes. In the following couple of years not much has happened and the community started speculating about the new science of a single source. More researchers joined that effort and already ten years after the initial discovery ~10 sources of teraelectronvolt gamma-rays were known. Today this discipline boasts to know more than 200 sources of very different origin, from supernova remnants to pulsars, from supermassive active galactic nuclei with black holes in their centre to gamma-ray busts, from binary systems to pulsar wind nebulae. A new discipline, the so-called astro-particle physics with diverse instrumentation appeared in the cross-roads between physics and astrophysics. In this lecture we will have a closer look to the details of this rapidly evolving, fascinating frontier science.
Raffaella Schneider