Speaker
Leonardo Rastelli
(YITP, Stony Brook)
Description
We formulate a series of conjectures relating the geometry of conformal manifolds to the spectrum of local operators in conformal field theories in d > 2 spacetime dimensions. Our central conjecture is that all theories at infinite distance in the Zamolodchikov metric possess an emergent higher-spin symmetry, generated by an infinite tower of currents whose anomalous dimensions vanish exponentially in the distance. In the holographic context our conjectures are related to the Distance Conjecture in the swampland program. We motivate and illustrate these conjectures by surveying the landscape of superconformal field theories in three and four dimensions.