The planning and the construction of 3G detectors represent technological challenge for the next two decades, aimed to great scientific expectations. The talk will be focussed on main experimental aspects of Einstein Telescope, the leading 3G project in Europe.
The funding of the Australian Research Council Centre of Excellence in Gravitational Wave Discovery (OzGrav) has significantly expanded the volume of experimental work that is being conducted in gravitational wave astronomy. Part of this work has focused on the development of the Australian High Frequency Detector (OzGrav HF). This detector aims to access the "matter region" of the...
An adaptive optics system (named thermal compensation system - TCS) is currently in operation in Advanced Virgo to monitor and compensate wavefront distortions with an accuracy of the order of nanometers ensuring a duty cycle of the interferometer higher than 75%. During preparatory phase for O3, the TCS actuators have been commissioned and tuned. New research and development activities are...
The LISA mission, which has been accepted by ESA as the ESA-L3 Gravitational Wave Mission,
aims at measuring gravitational waves in the sub-Hz band using inter-spacecraft interferometry.
LISA consists in a constellation of three satellites in triangle formation with 2.5 Gm-long arms
following along an Earth-like heliocentric orbit. The ambitious sensitivity of pm/Hz$^{1/2}$ presents
many...
Mátra Gravitational and Geophysical Laboratory was established in Hungary in 2015 with the aim to measure and analyze the advantages of the subterranean installation of third generation of gravitational-wave detectors. The laboratory is located 88 m below the ground. Seismic, infrasonic and electromagnetic noise have been monitored. The seismic data have been collected for almost two years....
Increasing sensitivity of GW detectors in the low-frequency band is important for studying the intermediate mass black holes and accumulating signal from the lighter binary systems. Existing gravitational-wave detectors are limited at low frequencies by seismic noise and mode cross-coupling. Seismic isolation at low frequencies is challenging due to a tilt injection, reduced seismometer...
The direct detection of the first Gravitational Waves signals by using a ground based laser interferometric network, put in evidence the importance of having a filtering system of seismic noise and local disturbances integrated into the experimental apparatus. The third generation detectors will have more stringent requirements, in terms of sensitivity, and the new instrument should be...
With the next generation of gravitational wave detectors being planned to operate at cryogenic temperatures we are facing many new challenges. ET Pathfinder will be a test facility for establishing new techniques required in future cryogenic detectors. In this talk we would like to introduce ET Pathfinder and some of the techniques we are planning to implement, with a focus on test-mass...
The talk will shortly review the key instrumental aspects of LISA, including the legacy of LISA Pathfinder, and its current status of development. The talk will also briefly touch on other efforts toward space-borne GW detectors