Speaker
Description
See the full abstract here http://ocs.ciemat.es/EPS2019ABS/pdf/P5.2014.pdf
Experimental, theoretical, simulation, and technological advances over the past 30 years are motivating a reassessment of the Magnetic Indirect Drive (MID) approach to Inertial Confinement Fusion (ICF). In this concept,1,2 a radiation source drives a hohlraum to temperatures required to implode a capsule symmetrically and create a high (>200 MJ) neutron yield. The advances start with a new concept for a pulsed-power driver3 that creates high amounts of radiation that can be coupled into a hohlraum.1 The capsule uses a liquid layer of deuterium-tritium fuel instead of the conventional cryogenic layer of DT used in current experiments.4 The liquid-layer approach is inherently low convergence (convergence ratio of 12-20) so that hydrodynamic instabilities and symmetry issues are greatly reduced. Experiments at the National Ignition Facility (NIF) demonstrated the basic robustness of this approach5-8 Advances in target fabrication98 are creating higher quality capsules with the foam matrix needed to support the liquid DT. Using an indirect-drive hohlraum leverages ten years of experience at NIF using laser-driven hohlraums. This experience shows where capsule/hohlraum issues remain and where modeling gaps remain. We outline the main physics concerns of the MID approach. These include symmetry control, the very important issue of minimum case-to-capsule ratio (CCR),10 radiation coupling into the hohlraum, and pulse-shaping of the radiation drive.
References
1 T. W. L. Sanford, R. E. Olson, R. L. Bowers, et al., Phys. Rev. Lett. 83 5511 (1999).
2 R. E. Olson, G. A. Chandler, M. S. Derson, et al., Fusion Technology 35 260 (1999).
3 W. A. Stygar, et al., Physical Review Special Topics 18 110401 (2015).
4 R. E. Olson and R. J. Leeper, Phys. Plasmas 0 092705 (2013).
5 R. E. Olson, J. L. Kline, R. J. Leeper, A. B. Zylstra, et al., Phys. Rev. Lett. 117 245001 (2016).
6 A. B. Zylstra, S. A. Yi, B. M. Haines, R. E. Olson, et al., Phys. Plasmas 25 056304 (2018).
7 R. E. Olson, R. J. Leeper, S. H. Batha, et al., submitted to Nuclear Fusion (2019).
8 B. M. Haines, R. E. Olson, W. Sweet, S. A. Yi, et al., Phys. Plasmas 26 012727 (2019).
9 T. Braun, et al. Fusion SciSci. Technol. 73 229 (2016).
10 A. B. Zylstra, S. A. Yi, S. MacLaren, J. Kline, et al., Phys. Plasmas 25 102704 (2018).