2–7 Sept 2018
Europe/Rome timezone

Super-heavy elements, nuclear structure and related accelerators

6 Sept 2018, 09:30
30m

Speaker

Prof. Yuri Oganessian

Description

A fundamental outcome of the microscopic theory is the prediction of an ‘islands of stability’ in the region of hypothetical super heavy elements (SHEs). In a heavy nucleus, going through the large-scale deformation on the way to fission, the motion of single nucleons is coupled with the collective degrees of freedom of the whole system. The most striking effect of this coupling is obtained for the case of fission of the heaviest nuclei, whose existence is defined entirely by the nuclear structure, i.e. by the shell effect. From this point of view, the synthesis and study of properties of super heavy nuclei (SHN) is a direct way for checking the basic statements of the microscopic nuclear theory. On the nuclide map, SHN outline the border of the heaviest nuclear masses. SHN set the limits of the periodic system of chemical elements. The study of possible existence of SHN in nature offers a way for testing different scenarios of astrophysical nucleosynthesis. The talk presents results concerning the synthesis and decay properties of the SH-nuclei from this ‘stability islands’ of SHEs obtained in cold and hot fusion reactions. The region of heavy nuclei have expanded and advanced up to mass of 294. New elements filled the 7th row of the Periodic Table of Elements. The results of the first chemical experiments and theoretical predictions about the influence of the "relativistic effect" on the electronic structure of the SH atom are presented. The prospects for research with the new facility - the SHE-Factory are discussed also

Primary author

Presentation materials