Description
Parallel sessions on Astro-particle Physics and Cosmology
The discovery of a diffuse flux of high energy neutrinos, provided by the IceCube neutrino telescope in 2012, has opened a new era in the field of astroparticle physics and neutrino astronomy. Nowadays the statistics is large enough to have a good measurement of the muon neutrino flux and a sufficient knowledge of the all-flavor flux, but the main mystery still remains: what is the origin of...
Antares, the largest deep-underwater Cherenkov neutrino telescope in the Northern hemisphere, has been taking data continuously since 2007. Its primary goal is the search for astrophysical neutrinos in the TeV-PeV range. Antares, thanks to its excellent angular resolution, has performed dedicated searches for promising neutrino source candidates and several interesting regions like the...
The Borexino detector, located at the Laboratori Nazionali del Gran Sasso in Italy, is a liquid scintillator detector with a primary goal to measure low-energy neutrinos created in the core of the Sun. In comparison to photons which need around hundred thousand years to reach the surface of the Sun, solar neutrinos are able to reach the earth around eight minutes after their creation. Thus,...
I will review the actual status of Dark Matter search with Neutrino Telescopes
The Cosmic Neutrino Background is a prediction of the standard cosmological model, but it has been never observed directly. Experiments with the aim of detecting relic CNB neutrinos are under development. For such experiments, the expected event rate depends on the local number density of relic neutrinos. Since massive neutrinos can be attracted by the gravitational potential of our galaxy and...
The discovery of gravitational waves and the observation of cosmic-derived neutrinos led to the birth of multi-messenger astronomy. Gravitational waves, neutrinos, photons, cosmic rays will be simultaneousily studied to investigate the highest energy phenomena in the Universe. The Pierre Auger Observatory, designed for the detection of ultra high energy cosmic rays, can search for primary...
Precision measurements of cosmic ray positrons and electrons are presented based on 1.9 million positrons and 28.1 million electrons collected by the AMS-02 experiment on the International Space Station. For the first time, the positron flux is measured up to 1 TeV and the electron flux up to 1.4 TeV: in the entire energy range the electron and positron spectra have distinctly different...
DAMPE (Dark Matter Particle Explorer) is a powerful space-borne experiment for direct detection of high-energy cosmic rays, electrons and gamma rays. DAMPE scientific goals include the search for dark matter signatures in electron and photon energy spectra from few tens of GeV up to 10TeV with unprecedented resolution (better than 1.5% at 800GeV), and the study of galactic cosmic rays with...
Precision study of cosmic nuclei provides detailed knowledge on the origin and propagation of cosmic rays. AMS is a multi-purpose high energy particle detector designed to measure and identify cosmic ray nuclei with unprecedented precision. It is able to provide precision studies of nuclei simultaneously to multi-TeV energies. In 7 years on the Space Station, AMS has collected more than 120...
For energies below 30 GeV, the Cosmic Rays flux is modulated in intensity by the solar activity. This effect can be efficiently monitored with space-borne detectors for charged particles. The High-Energy Particle Detector (HEPD) is a space apparatus on board of the China Seismo- Electro-magnetic Satellite (CSES). It is built around a segmented calorimeter, having as upper part a tower of...
The General Antiparticle Spectrometer (GAPS) is designed specifically to measure low energy (E < 0.25 GeV/nucleon) antinuclei in the cosmic radiation.
Many beyond standard model theories predict a possible signal of antinuclei from dark matter annihilation or decay. In this context, the antideuteron component is particularly interesting because the intensity from secondary/tertiary...
The High Energy cosmic-Radiation Detection (HERD) facility will be installed on board the China's Space Station (CSS) in the years around 2026 and will operate for a period of about 10 years measuring the flux of cosmic rays. Thanks to its innovative design, based on a large, homogeneous and isotropic calorimeter made of LYSO crystals, HERD is capable of detecting particles that enters the...
The origin and nature of Ultra-High Energy Cosmic Rays (UHECRs) are still unsolved in the contemporary scenario of Astroparticle Physics. To give an answer to these questions is rather challenging because of the extremely low flux of a few per km^2 per century at extreme energies such as E > 5x10^19 eV.
The main objective of the JEM-EUSO program (Joint Experiment Mission - Extreme Universe...
The XENON Dark Matter Project opened the era of ton-scale detectors seeking for direct evidence of dark matter with the XENON1T experiment. XENON1T focused on the search for WIMPs, the most investigated class of particles hypothesized to be the DM constituent. The detector is a dual-phase (liquid-gas) time projection chamber (TPC) featuring 2.0 t liquid xenon (LXe) target mass and operated in...
SABRE (Sodium-iodide with Active Background REjection) is a direct dark matter search experiment aiming to measure the annual modulation of the dark matter interaction rate with NaI(Tl) crystals. A modulation with very high statistical significance (12.9σ) has been measured by the DAMA experiment at Laboratori Nazionali del Gran Sasso using the same target material.
Results from several other...
A variety of experiments have been developed over the past decades, aiming to detect Weakly Interactive Massive Particles (WIMPs) via their scattering in a detector medium. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods. Detectors that are able to reconstruct the direction of the...
In the last decades an incredible amount of evidence for the existence of dark matter has been accumulating. At the same time, many efforts have been undertaken to try to identify what dark matter is. Indirect searches look at places in the Universe where dark matter is known to be abundant and seek for possible annihilation or decay signatures. The Cherenkov Telescope Array (CTA) represents...
DarkSide uses dual-phase Liquid Argon Time Projection Chambers (TPC) to search for WIMP dark matter.
The talk will present the latest result from the current experiment, DarkSide-50, which has been running since mid-2015 and uses a 50-kg-active-mass TPC filled with argon from an underground source.
The next stage of the DarkSide program will be a new generation experiment involving a global...
The first results obtained by the DAMA/LIBRA–phase2 experiment are presented. The data have been collected over 6 independent annual cycles corresponding to a total exposure of 1.13 ton × yr, deep underground at the Gran Sasso Laboratory. The DAMA/LIBRA–phase2 apparatus, about 250 kg highly radio-pure NaI(Tl), profits from a second generation high quantum efficiency photomultipliers and of new...
The presence of a non-baryonic dark matter (DM) component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model (SM) it could be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS experiment has developed a broad and systematic search...
The discovery of gravitational waves from binary black hole mergers has renewed interest in primordial black holes forming a part of the dark matter density of our Universe. Various tests have been proposed to test this hypothesis. One of the cleanest tests is the lensing of fast radio bursts. In this situation, the presence of a compact object near the line of sight produces two images of the...
QUBIC (the Q and U Bolometric Interferometer for Cosmology) is a CMB polarimeter designed to search the B-mode polarization of the CMB, the signature expected from primordial gravitational waves generated during the inflation phase of the early Universe.
QUBIC, a collaboration between French, Italian, Argentinean, Irish and British laboratories, is an innovative instrument based on the novel...
After a brief introduction on Gravitational Waves interferometric detection, we report on the present status of the Advanced Virgo dtetector.In the last O2 data taking the network of GW dtetectors observed the first NS-NS merger in coincidence with gamma rays, opening the multimessenger astronomy to GWs. The three GW detectors are now jointly taking data with an improved sensitivity for the O3...
Core collapse supernovae, among the most energetic explosions in the
modern Universe, have not been detected yet, while
gravitational waves have been detected from mergers of binary black
holes and binary neutron stars.
To enhance the detection efficiency of such category of signals we
present a nonlinear method based on convolutional
neural network algorithm to extract core collapse...
We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the...
Dark Matter particles if accumulated in considerable numbers after being
captured inside a massive astrophysical object such as Galactic Centre,
may undergo the process of self annihilation to produce Standard Model
particles such as fermion-antifermion pairs, gamma rays etc. In case
the annihilation products include electrons then under the influence of
magnetic field present in the Galactic...
The precision measurements of the monthly variation of proton, helium, carbon, and oxygen cosmic ray fluxes for the period from May 2011 to May 2018 and in the rigidity range from ~2 GV up to ~60 GV, obtained with the Alpha Magnetic Spectrometer on the International Space Station are presented. This period covers both the ascending phase of solar cycle # 24 together with the reversal of the...
Directional sensitivity to nuclear recoils would provide a smoking gun for a possible discovery of dark matter in the form of WIMPs. A hint of directional dependence of the response of a dual-phase liquid argon Time Projection Chamber (TPC) was found in the SCENE experiment. Given the potential importance of such a capability in the framework of dark matter searches, a new dedicated...