9-14 September 2018
University of Ferrara
Europe/Rome timezone

Searches for dark matter and new particles with electric-dipole-moment and spin-precession measurements

11 Sep 2018, 16:40
A1 (Polo degli Adelardi - Via Adelardi, 33)


Polo degli Adelardi - Via Adelardi, 33

Via Adelardi, 33
Parallel Sessions Fundamental Symmetries and Spin Physics Beyond the Standard Model Fundamental Symmetries and Spin Physics Beyond the Standard Model


Dr Yevgeny Stadnik (Johannes Gutenberg University of Mainz)


Measurements of electric dipole moments (EDMs) in atoms, molecules and neutrons serve as sensitive probes of new physics. We give a brief overview of atomic EDM theory [1] and discuss several recent applications of EDM-based measurements to search for new particles. New bosons can mediate anomalous forces between standard-model particles. Using data from existing atomic and molecular EDM measurements, we have placed limits on P,T-violating scalar-pseudoscalar interactions mediated by spinless bosons, improving on previous laboratory bounds from other experiments by many orders of magnitude for a broad range of boson masses [2,3]. Ultra-low-mass bosonic dark matter particles produced after the Big Bang may form an oscillating classical field. The interaction of this oscillating field with standard-model fermions and gluons can give rise to time-varying spin-dependent effects, including “axion wind” spin-precession effects and time-varying electric dipole moments, which can be sought for with atomic magnetometry, ultracold neutron and torsion pendulum experiments [4-6]. Recently, the nEDM collaboration performed the first experimental search for these effects, in the process improving on previous bounds by up to a factor of 1000 [7]. References [1] J. S. M. Ginges, V. V. Flambaum, Phys. Rep. 397, 63 (2004). [2] Y. V. Stadnik, V. A. Dzuba, V. V. Flambaum, Phys. Rev. Lett. 120, 013202 (2018). [3] V. A. Dzuba, V. V. Flambaum, I. B. Samsonov, Y. V. Stadnik, arXiv:1805.01234. [4] V. V. Flambaum, talk at 2013 Patras Workshop. [5] Y. V. Stadnik, V. V. Flambaum, Phys. Rev. D 89, 043522 (2014). [6] Y. V. Stadnik, Manifestations of Dark Matter and Variations of the Fundamental Constants of Nature in Atoms and Astrophysical Phenomena, (Springer, Cham, Switzerland, 2017). [7] C. Abel et al., Phys. Rev. X 7, 041034 (2017).

Primary author

Dr Yevgeny Stadnik (Johannes Gutenberg University of Mainz)


Prof. Victor Flambaum (University of New South Wales)

Presentation Materials