
Generation of a primary event

Luciano Pandola
INFN – Laboratori Nazionali del Sud

Geant4 Course, XV Seminar on Software for Nuclear,
Subnuclear and Applied Physics,
Alghero, May 28th- June 1st, 2018

 Primary vertex and primary particle

 G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

 The particle gun

 General Particle Source (or GPS)

 Particle gun or GPS?

Outline

User Classes
Initialisation classes
Invoked at the initialization

 G4VUserDetectorConstruction
 G4VUserPhysicsList

Action classes
Invoked during the execution loop

 G4VUserActionInitialization
 G4VUserPrimaryGeneratorAction
 G4UserRunAction (*)
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

Global: only one instance of
them exists in memory, shared
by all threads (readonly).
Managed only by the master
thread. Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for
master and one for threads

G4VUserPrimaryGeneratorAction

 It is one of the mandatory user classes and it
controls the generation of primary particles
 This class does not directly generate primaries

but invokes the GeneratePrimaryVertex()
method of a generator to create the initial state

 It registers the primary particle(s) to the
G4Event object

 It has GeneratePrimaries(G4Event*)
method which is purely virtual, so it must be
implemented in the user class

 Primary vertex and primary particle

 G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

 The particle gun

 General Particle Source (or GPS)

 Particle gun or GPS?

Outline

G4VPrimaryGenerator
 G4VPrimaryGenerator is the base class for particle

generators, that are called by
GeneratePrimaries(G4Event*) to produce an
initial state
 Notice: you may have many particles from one vertex, or even many

vertices in the initial state
 Derived class from G4VPrimaryGenerator must

implement the purely virtual method
GeneratePrimaryVertex(G4Event*)

 Geant4 provides three concrete classes derived by
G4VPrimaryGenerator

 G4ParticleGun
 G4HEPEvtInterface (not described here ask, if you are curious !)
 G4GeneralParticleSource

G4ParticleGun
 (Simplest) concrete implementation of
G4VPrimaryGenerator
 It can be used for experiment-specific primary

generator implementation
 It shoots one primary particle of a given energy

from a given point at a given time to a given
direction

 Various “Set” methods are available (see
../source/event/include/G4ParticleGun.hh)
 void SetParticleEnergy(G4double aKineticEnergy);
void SetParticleMomentum(G4double aMomentum);
void SetParticlePosition(G4ThreeVector aPosition);
void SetNumberOfParticles(G4int aHistoryNumber);

G4VUserPrimaryGeneratorAction:
the usual recipe

 Constructor
 Instantiate primary generator (i.e. G4ParticleGun())
particleGun = new G4ParticleGun();

 (Optional, but advisable): set the default values
particleGun -> SetParticleEnergy(1.0*GeV);

 GeneratePrimaries() mandatory method
 Randomize particle-by-particle value, if required

 Set these values to the primary generator
 Invoke GeneratePrimaryVertex() method of primary

generator
 particleGun->GeneratePrimaryVertex(…)

A "real-life" myPrimaryGenerator:
constructor & destructor

myPrimaryGenerator::myPrimaryGenerator ()
: G4VUserPrimaryGeneratorAction(), fParticleGun(0)
{
 fParticleGun = new G4ParticleGun();

 // set defaults
 fParticleGun->SetParticleDefinition(
 G4Gamma::Definition());
 fParticleGun->
 SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fParticleGun->SetParticleEnergy(6.*MeV);
}

Instantiate
concrete generator

myPrimaryGenerator::~myPrimaryGenerator ()
{
 delete fParticleGun;
}

Clean it up in the destructor

A "real-life" myPrimaryGenerator:
GeneratePrimaries(G4Event*)

myPrimaryGenerator::GeneratePrimaries(G4Event* evt)
{
 // Randomize event-per-event
 G4double cosT = -1.0 + G4UniformRand()*2.0;
 G4double phi = G4UniformRand()*twopi;

 G4double sinT = sqrt(1-cosT*cosT);
 G4ThreeVector direction(sinT*sin(phi),sinT*cos(phi),cosT);

 G4double ene = G4UniformRand()*6*MeV;

 fParticleGun->SetParticleDirection(direction);
 fParticleGun->SetParticleEnergy(ene);

 fParticleGun->GeneratePrimaryVertex(evt);
}

Sample direction
isotropically

Shoot event

Sample energy
(flat distr.)

G4ParticleGun
 Commands can be also given interactively by user interface

 But cannot do randomization in this case
 Allows to change primary parameters between one run and

an other
 Notice: parameters from the UI could be overwritten in
GeneratePrimaries()

/gun/energy 10 MeV
/gun/particle mu+
/gun/direction 0 0 -1
/run/beamOn 100
/gun/particle ion
/gun/ion 55 137
/gun/position 10 10 -100 cm
/run/beamOn 100

Start first run

Start second run

Change settings

Change settings Generate
137Cs

 Primary vertex and primary particle
 Built-in primary particle generators
The particle gun
 General Particle Source (or GPS)

 Particle gun or GPS?

Outline

G4GeneralParticleSource()
 source/event/include/G4GeneralParticleSource.hh
 Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public
G4VPrimaryGenerator

 Is designed to replace the G4ParticleGun class
 It is designed to allow specification of multiple particle sources each

with independent definition of particle type, position, direction and
energy distribution
 Primary vertex can be randomly chosen on the surface of a certain

volume, or within a volume
 Momentum direction and kinetic energy of the primary particle can also

be randomized
 Distribution defined by UI commands

G4GeneralParticleSource

 On line manual:
 Section 2.7 of the Geant4 Application Developer

Manual
 /gps main commands
 /gps/pos/type (planar, point, etc.)
 /gps/ang/type (iso, planar wave, etc.)
 /gps/energy/type (monoenergetic, linear, User

defined)

GPS documentation

ParticleGun vs. GPS
 G4ParticleGun

 Simple and native
 Shoots one track at a time
 Easy to handle

 G4GeneralParticleSource
 Powerful
 Controlled by UI commands

 G4GeneralParticleSourceMessenger.hh
 Almost impossible to do with the naïve Set methods

 Capability of shooting particles from a surface or a volume
 Capability of randomizing kinetic energy, position, direction

following a user-specified distribution (histogram)

When do you need your own derived
class of G4VPrimaryGenerator

 In some cases, what it provided by Geant4 does not fit
specific needs: need to write a derived class from
G4VPrimaryGenerator
 Must implement the virtual method
GeneratePrimaryVertex(G4Event* evt)

 Generate vertices (G4PrimaryVertex) and attach particles
to each of them (G4PrimaryParticle)

 Add vertices to the event evt->AddPrimaryVertex()
 Needed when:

 You need to interface to a non-HEPEvt external generator
 neutrino interaction, Higgs decay, non-standard interactions

 Many particles from one vertex, or many vertices
 double beta decay

 Time difference between primary tracks

Examples
 examples/extended/analysis/A01/src/A
01PrimaryGeneratorAction.cc is a good
example to start with

 Examples also exist for GPS
examples/extended/eventgenerator/
exgps

 And for HEPEvtInterface
example/extended/runAndEvent/RE01/sr
c/RE01PrimaryGeneratorAction.cc

Hands-on session
 Task2

 G4ParticleGun and Geant4 GPS

 http://geant4.lngs.infn.it/alghero2018/
task2

 Primary vertex and primary particle
 Built-in primary particle generators
The particle gun
Interfaces to HEPEVT and HEPMC
General Particle Source (or GPS)

 Particle gun or GPS?

Outline

 Concrete implementation of G4VPrimaryGenerator
 Almost all event generators in use are written in

FORTRAN but Geant4 does not link with any external
FORTRAN code
 Geant4 provides an ASCII file interface for such event

generators
 G4HEPEvtInterface reads an ASCII file produced by

an Event generator and reproduce the G4PrimaryParticle
objects.

 In particular it reads the /HEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

 It generates only the kinematics of the initial state, so
the interaction point must be still set by the user

G4HEPEvtInterface

	Generation of a primary event
	Outline
	User Classes
	G4VUserPrimaryGeneratorAction
	Diapositiva numero 5
	Outline
	G4VPrimaryGenerator
	G4ParticleGun
	G4VUserPrimaryGeneratorAction: the usual recipe
	A "real-life" myPrimaryGenerator: constructor & destructor
	A "real-life" myPrimaryGenerator: GeneratePrimaries(G4Event*)
	G4ParticleGun
	Outline
	G4GeneralParticleSource()
	G4GeneralParticleSource
	Diapositiva numero 16
	GPS documentation
	ParticleGun vs. GPS
	When do you need your own derived class of G4VPrimaryGenerator
	Examples
	Hands-on session
	Diapositiva numero 22
	Outline
	G4HEPEvtInterface

