
The concept

Luciano Pandola
INFN

GSSI, L'Aquila

What is
 Toolkit for the Monte Carlo simulation of the interaction of

particles with matter
 physics processes (EM, hadronic, optical) cover a

comprehensive set of particles, materials and over a wide
energy range

 it offers a complete set of support functionalities (tracking,
geometry, hits)

 Distributed software production and management:
developed by an international Collaboration
 Established in 1998
 Approximately 100 members, from Europe, America and Asia

 Written in C++ language
 Takes advantage from the Object Oriented software

technology
 Open source

http://geant4.org

S. Agostinelli et al., Nucl. Instr. Meth. A 506 (2003) 250
J. Allison et al., IEEE Trans. Nucl. Scie. 53 (2006) 270

 Code and documentation available in the main
web page

 Regular tutorial courses held worldwide

http://geant4.org

Who/why is using Geant4?

Experiments and MC
 In my knowledge, all experiments have a (more

or less detailed) full-scale Monte Carlo simulation
 Design phase

 Evaluation of background
 Optimization of setup to maximize scientific yield

 Minimize background, maximize signal efficiency

 Running/analysis phase
 Support of data analysis (e.g. provide efficiency for

signal, background, coincidences, tagging, …).
 often, Monte Carlo is the only way to convert relative

rates (events/day) in absolute yields

Why Geant4 is a common
choice in the market

 Open source and object oriented/C++
 No black box
 Freely available on all platforms
 Can be easily extended and customized by using the

existing interfaces
 New processes, new primary generators, interface to ROOT

analysis, …
 Can handle complex geometries
 Regular development, updates, bug fixes and

validation
 Good physics, customizable per use-cases
 End-to-end simulation (all particles, including optical

photons)

LHC @ CERN
 All four big LHC

experiments have a
Geant4 simulation
 M of volumes
 Physics at the TeV scale

ATLAS

CMS

 Benchmark with
test-beam data

 Key role for the
Higgs searches

Space applications

 Satellites (γ astrophysics, planetary sciences)
 Funding from ESA

AGILE

GLAST Typical telescope:
 Tracker
 Calorimeter
 Anticoincidence

 Treatment planning for
hadrontherapy and proton-
therapy systems
 Goal: deliver dose to the tumor

while sparing the healthy tissues
 Alternative to less-precise (and

commercial) TP software
 Medical imaging
 Radiation fields from medical

accelerators and devices
 medical_linac
 gamma-knife
 brachytherapy

Proton-therapy beam line

GEANT4 simulation

Medical applications

Dosimetry with Geant4

Space science Radiotherapy Effects on electronics
components

Nuclear spectroscopy

11
SCEPTAR

TIGRESS

Low background experiments
Neutrinoless ββ

decay:
GERDA, Majorana

COBRA, CUORE, EXO

Dark matter detection:
Zeplin-II/III, Drift, Edelweiss, ArDM,

Xenon, CRESST, Lux, Elixir,

Solar neutrinos:
Borexino, ...

Geant4-based frameworks in
the medical physics

TOPAS

PTSim

GATE

Basic concept of Geant4

Toolkit and User Application
 Geant4 is a toolkit (= a collection of tools)

 i.e. you cannot “run” it out of the box
 You must write an application, which uses Geant4 tools

 Consequences:

 There are no such concepts as “Geant4 defaults”
 You must provide the necessary information to configure your

simulation
 You must deliberately choose which Geant4 tools to use

 Guidance: many examples are provided

 Basic Examples: overview of Geant4 tools
 Advanced Examples: Geant4 tools in real-life applications

Basic concepts

 What you MUST do:
 Describe your experimental set-up
 Provide the primary particles input to your simulation
 Decide which particles and physics models you want to use

out of those available in Geant4 and the precision of your
simulation (cuts to produce and track secondary particles)

 You may also want
 To interact with Geant4 kernel to control your simulation
 To visualise your simulation configuration or results
 To produce histograms, tuples etc. to be further analysed

Main Geant4 capabilities

 Transportation of a particle ‘step-by-step’ taking into
account all possible interactions with materials and fields

 The transport ends if the particle
 is slowed down to zero kinetic energy (and it doesn't have

any interaction at rest)
 disappears in some interaction
 reaches the end of the simulation volume

 Geant4 allows the User to access the transportation
process and retrieve the results (USER ACTIONS)
 at the beginning and end of the transport
 at the end of each step in transportation
 if a particle reaches a sensitive detector
 Others…

Multi-thread mode
 Geant4 10.0 (released Dec, 2013) supports multi-

thread approach for multi-core machines
 Simulation is automatically split on an event-by-

event basis
 different events are processed by different cores

 Can fully profit of all cores available on modern
machines substantial speed-up of simulations

 Unique copy (master) of geometry and physics
 All cores have them as read-only (saves memory)

 Backwards compatible with the sequential mode
 The MT programming requires some care: need to

avoid conflicts between threads
 Some modification and porting required

The (conceptual) recipe for a
Geant4-based application

Interaction with the Geant4
kernel - 1

 Geant4 design provides tools for a user
application
 To tell the kernel about your simulation configuration
 To interact with Geant4 kernel itself

 Geant4 tools for user interaction are base

classes
 You create your own concrete class derived from

the base classes interface to the Geant4 kernel
 Geant4 kernel handles your own derived classes

transparently through their base class interface
(polymorphism)

Interaction with the Geant4
kernel - 2

 Abstract base classes for user interaction
(classes starting with G4V)
 User derived concrete classes are mandatory
 User to implement the purely virtual methods

 Concrete base classes (with virtual dummy

default methods) for user interaction
 User derived classes are optional

Two types of Geant4 base classes:

User Classes (from 10.0)

Initialisation classes
Invoked at the initialization

 G4VUserDetectorConstruction
 G4VUserPhysicsList

Action classes
Invoked during the execution loop

 G4VUserActionInitialization
 G4VUserPrimaryGeneratorAction
 G4UserRunAction (*)
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

Global: only one instance of
them exists in memory, shared
by all threads (readonly).
Managed only by the master
thread. Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for
master and one for threads

User Classes - 2

Mandatory classes
in ANY Geant4 User

Application

 G4VUserDetectorConstruction
 describe the experimental set-up

 G4VUserPhysicsList
 select the physics you want to activate

 G4VUserActionInitialization
 takes care of the user initializations
 G4VUserPrimaryGeneratorAction

Geant4 kernel

VGeometry VPhysics VActionIn

MyGeom MyPhysics VPrimarry RunAction EvtAction StepAction

MyStep

G4MTRunManager

Geant4 concept (MT)

MyPrimary

Only virtual interface
provided users

MUST implement their
concrete implementation

The mandatory user classes

The geometry

 User class which describes the geometry must
inherit from G4VUserDetectorConstruction
and registered in the Run Manager

 Virtual base class: the purely virtual method must
be implemented
 G4VPhysicalVolume* Construct() = 0;

 Must return the pointer to the world volume: all other
volumes are contained in it

 Optionally, implement the virtual method
 void ConstructSDandField();

 Defines sensitive volumes and EM fields

Select physics processes

 Geant4 doesn’t have any default particles or processes
 Derive your own concrete class from the
G4VUserPhysicsList abstract base class
 define all necessary particles
 define all necessary processes and assign them to proper

particles
 define γ/δ production thresholds (in terms of range)

 Pure virtual methods of G4VUserPhysicsList

must be implemented by the user
in his/her concrete derived class

ConstructParticles()
ConstructProcesses()
SetCuts()

Physics Lists
 Geant4 doesn’t have any default particles or processes
 Partially true: there is no default, but there are a set of

"ready-for-use" physics lists released with Geant4,
tailored to different use cases. Mix and match:
 Different sets of hadronic models (depending on the

energy scale and modeling of the interactions)
 Different options for neutron tracking

 Do we need (CPU-intensive) description of thermal neutrons,
neutron capture, etc?

 Different options for EM physics
 Do you need (CPU-intensive) precise description at the low-

energy scale (< 1 MeV)? E.g. fluorescence, Doppler effects in the
Compton scattering, Auger emission, Rayleigh diffusion

 Only a waste of CPU time for LHC, critical for many low-
background experiments

Action Initialization
 New in Geant4 10.0 (supports multi-thread)
 User class must inherit from
G4VUserActionInitialization and registered in
the Run Manager

 Implement the purely virtual method
 void Build() = 0;
 Invoked in sequential mode and in MT mode by all

workers
 Must instantiate at least the primary generator

 Optional virtual method
 void BuildForMaster();
 Invoked by the master in MT mode. Applies only to Run

Action (all other user actions are thread-local)

Primary generator
 User class must inherit from
G4VUserPrimaryGeneratorAction
 Registered to the Run Manager via the

ActionInizialitation (MT mode)
 Register directly to the RunManager in seq-mode

 Implement the purely virtual method
 void GeneratePrimaries(G4Event*)=0;
 Called by the RunManager during the event loop, to

generate the primary vertices/particles
 Uses internally a concrete instance of
G4VPrimaryGenerator (e.g. G4ParticleGun) to
do the job

The optional user classes

Optional user classes - 1
 Five concrete base classes whose virtual member

functions the user may override to gain control of the
simulation at various stages
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has a
dummy implementation (not purely virtual)
 Empty implementation: does nothing

e.g. actions to be done
at the beginning and
end of each event

Optional user classes - 2

 The user may implement the member functions
he desires in his/her derived classes
 E.g. one may want to perform some action at each tracking

step

 Objects of user action classes must be
registered to the Run Manager via the
G4VActionInizialization
 Notice: in the old-style sequential mode, the user

action classes can be registered directly to the
Run Manager

Methods of user classes - 1
G4UserRunAction

- BeginOfRunAction(const G4Run*) // book histos

- EndOfRunAction(const G4Run*) //store histos

G4UserEventAction
-BeginOfEventAction(const G4Event*) //initialize event

-EndOfEventAction (const G4Event*) // analyze event

G4UserTrackingAction
- PreUserTrackingAction(const G4Track*)

//decide to store/not store a given track
-PostUserTrackingAction(const G4Track*)

Methods of user classes - 2
G4UserSteppingAction

- UserSteppingAction(const G4Step*)

//kill, suspend, pospone the track, draw the step, …

G4UserStackingAction
-PrepareNewEvent() //reset priority control

-ClassifyNewTrack(const G4Track*)

 // Invoked when a new track is registered (e.g. kill, pospone)

- NewStage()

// Invoked when the Urgent stack becomes empty (re-classify,
abort event)

MyActionInitialization (MT
mode)

void MyActionInitialization::Build() const
{
 //Set mandatory classes
 SetUserAction(new MyPrimaryGeneratorAction());
 // Set optional user action classes
 SetUserAction(new MyEventAction());
 SetUserAction(newMyRunAction());
}

void MyActionInitialization::BuildForMaster() const
{
 // Set optional user action classes
SetUserAction(newMyMasterRunAction());
}

 Register thread-local user actions

 Register RunAction for the master

The main() program

The main() program - 1

 Geant4 does not provide the main()
 Geant4 is a toolkit!
 The main() is part of the user application

 In his/her main(), the user must
 construct G4RunManager (or his/her own derived class)
 notify the G4RunManager mandatory user classes derived

from
 G4VUserDetectorConstruction
 G4VUserPhysicsList
 G4VUserActionInitialization (takes care of Primary)

 In MT mode, use G4MTRunManager

The main() program - 2

 The user may define in his/her main()
 optional user action classes
 VisManager, (G)UI session

 The user also has to take care of retrieving and
saving the relevant information from the simulation
(Geant4 will not do that by default)

 Don’t forget to delete the G4RunManager at the end

Sequential vs. MT main()

 The MT vs. sequential mode can be chosen in
the main() by picking the appropriate
RunManager:
 G4RunManager for sequential
 G4MTRunManager for multi-thread

 // Construct the default run manager. Pick the proper run
 // manager depending if the multi-threading option is
 // active or not.
#ifdef G4MULTITHREADED
 G4MTRunManager* runManager = new G4MTRunManager;
#else
 G4RunManager* runManager = new G4RunManager;
#endif

An example of (MT) main()

{
 …
 // Construct the default run manager
 G4MTRunManager* runManager = new G4MTRunManager;

 // Set mandatory user initialization classes
 MyDetectorConstruction* detector = new MyDetectorConstruction;
 runManager->SetUserInitialization(detector);
 MyPhysicsList* physicsList = new MyPhysicsList;
 runManager->SetUserInitialization(myPhysicsList);

 // Set mandatory user action classes
 runManager->SetUserAction(new MyActionInitialization);
 …
}

Optional: select (G)UI

 In your main(), taking into account your computer
environment, instantiate a G4UIsession
concrete/derived class provided by Geant4 and invoke
its SessionStart() method

 mysession->SessionStart();
 It can be used to give commands at run-time (do not

require the re-compilation of the application)
 Select particle/energy, change settings, etc.

 Geant4 provides:
 G4UIterminal
 csh or tcsh like character terminal
 Qt
 batch job with macro file
 …

Optional: select visualization

 In your main(), taking into account your computer
environment, instantiate the G4VisExecutive and
invoke its Initialize() method

 Geant4 provides interfaces to many graphics drivers:
 DAWN (Fukui renderer)
 WIRED
 RayTracer (ray tracing by Geant4 tracking)
 OpenGL
 OpenInventor
 Qt
 VRML
 X11-compliant

An example of (sequential)
main()

{
 …
 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // Set mandatory user initialization classes
 MyDetectorConstruction* detector = new MyDetectorConstruction;
 runManager->SetUserInitialization(detector);
 MyPhysicsList* physicsList = new MyPhysicsList;
 runManager->SetUserInitialization(myPhysicsList);

 // Set mandatory user action classes
 runManager->SetUserAction(new MyPrimaryGeneratorAction);

 // Set optional user action classes
 MyEventAction* eventAction = new MyEventAction();
 runManager->SetUserAction(eventAction);
 MyRunAction* runAction = new MyRunAction();
 runManager->SetUserAction(runAction);
 …
}

General recipe for novice
users

 Design your application… requires some preliminar
thinking (what is it supposed to do?)

 Create your derived mandatory user classes
 MyDetectorConstruction
 MyPhysicsList
 MyActionInitialization (must register MyPrimaryGenerator)

 Create optionally your derived user action classes
 MyUserRunAction, MyUserEventAction, …

 Create your main()
 Instantiate G4RunManager or your own derived MyRunManager
 Notify the RunManager of your mandatory and optional user classes
 Optionally initialize your favourite User Interface and Visualization

 That’s all!

Experienced users may do much
more, but the conceptual
process is still the same…

Documentation

 A few manuals available in the Geant4 webpage
 Application developer manual
 Physics manual

 Other tools
available
 LXR code

repository
 User forum
 Bugzilla

http://geant4.org

Examples
 Ready-for-the-use Geant4 applications (examples)

are distributed with Geant4
 Very good starting point for new users

 Three suites of examples:
 "basic": oriented to novice users and covering the most

typical use-cases of a Geant4 application with keeping
simplicity and ease of use.

 "extended": covers many specific use cases for actual
detector simulation.

 "advanced": where real-life complete applications for
different simulation studies are provided

 The exercises of this course are based on the basic
example B3

Examples

 A webpage with doxygen documentation is
available for the basic/extended examples

http://cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html

Backup

Initialization
m ain Run m anage r user d et ect o r

co nst ruc t ion
use r p hy sics

l is t

1 : in i t ial iz e
2 : co nst ruc t

3 : m at e rial co nst ruct ion

4 : ge om et r y c on st ruc t io n
5 : w or ld v o lum e

6 : c on st ruc t

7 : p hy sics p roc ess co nst ruc

8 : set cu t s

Describe your
experimental set-up

Activate physics processes
appropriate to your experiment

Beam On
m ain Run Manager Geom et ry

manager
Event

generat or
Event

Manager

1 : Beam On
2 : c lose

3 : generat e one event

4: process one event

5 : open

Generate primary events
according to distributions
relevant to your experiment

Event loop
m ain Run Manager Geom et ry

manager
Event

generat or
Event

Manager

1 : Beam On
2 : c lose

3 : generat e one event

4: process one event

5 : open

Generate primary events
according to distributions
relevant to your experiment

User Classes (<= 9.6)

Initialisation classes
Invoked at the initialization

 G4VUserDetectorConstruction
 G4VUserPhysicsList

Action classes
Invoked during the execution loop

 G4VUserPrimaryGeneratorAction
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

Classes having name
starting with G4V are

abstract classes
(containing purely
virtual methods)

Only virtual interface
provided users

MUST implement their
concrete

implementation

Given concrete (dummy)
implementation. User

MAY give an alternative
implementation

Geant4 kernel

VGeometry VPhysics VPrimary

MyGeom MyPhysics MyPrimary

RunAction EvtAction StepAction

MyStep

G4RunManager

Geant4 concept

Only virtual interface
provided users

MUST implement their
concrete

implementation

Given concrete (dummy)
implementation. User

MAY give an alternative
implementation

Geant4 kernel

VGeometry VPhysics VPrimary

MyGeom MyPhysics MyPrimary

RunAction EvtAction StepAction

MyStep

G4RunManager

Geant4 concept

	The concept
	What is
	Diapositiva numero 3
	Who/why is using Geant4?
	Experiments and MC
	Why Geant4 is a common choice in the market
	LHC @ CERN
	Space applications
	Medical applications
	Dosimetry with Geant4
	Nuclear spectroscopy
	Low background experiments
	Geant4-based frameworks in the medical physics
	Basic concept of Geant4
	Toolkit and User Application
	Basic concepts
	Main Geant4 capabilities
	Multi-thread mode
	The (conceptual) recipe for a Geant4-based application
	Interaction with the Geant4 kernel - 1
	Interaction with the Geant4 kernel - 2
	User Classes (from 10.0)
	User Classes - 2
	Geant4 concept (MT)
	The mandatory user classes
	The geometry
	Select physics processes
	Physics Lists
	Action Initialization
	Primary generator
	The optional user classes
	Optional user classes - 1
	Optional user classes - 2
	Methods of user classes - 1
	Methods of user classes - 2
	MyActionInitialization (MT mode)
	The main() program
	The main() program - 1
	The main() program - 2
	Sequential vs. MT main()
	An example of (MT) main()
	Optional: select (G)UI
	Optional: select visualization
	An example of (sequential) main()
	General recipe for novice users
	Documentation
	Examples
	Examples
	Backup
	Initialization
	Beam On	
	Event loop
	User Classes (<= 9.6)
	Geant4 concept
	Geant4 concept

