Simone Valdré INFN – Sezione di Firenze for the FAZIA collaboration

Time of flight identification with FAZIA

Catania, May 22nd - 25th, 2018

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
The FAZI	A telescope			

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions
The FAZIA telescope				

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

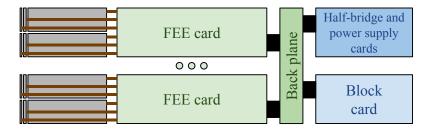


FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
The FAZI	A telescope			

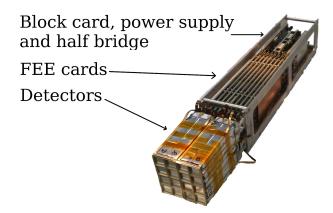
The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

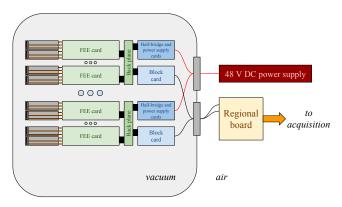


FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
o●ooooo	00000	0000		00
The FAZI	A block			


2 telescopes are connected to a FEE card.

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
The FA7I	A block			

8 FEE cards are connected to a block card via a back plane.


FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
The FAZI	^ block	0000	000	00
THE FALL	A DIOCK			

Block is mounted on a copper base in which water flows to provide cooling

FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
	00000	0000	000	00
The FA7I	A block			

up to 36 block cards are connected to a regional board via a full duplex 3 Gb/s optical link

ZIA block	ToF technique	ToF ID	Synchronization	Conclusions
00000	00000	0000	000	00

FAZ

FEE card

- Designed at IPN, Orsay^a
- 2 FAZIA telescopes per card
- Programmable logic performs on-line analysis of sampled data
 - VHDL code has been mainly written by P. Edelbruck
- FEE supplies also the bias voltages of Si detectors

^aF. Salomon et al, J. Instrum. 11 (C01064), 2016

FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
00000	00000	0000	000	00

Detector connectors

- Detectors are connected using kapton cables
- Silicon side kapton connection:
 - ultra-sonic μ bonding
 - conductive glue

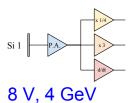
FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
Front-end	electronics			

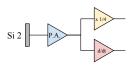
AZIA block	ToF technique	ToF ID	Synchronization	Conclusions
000000	00000	0000	000	00

Analog chain (for each telescope)

- 3 fixed gain charge pre-amplifiers
- High range signals are **attenuated** by a factor 4
- Low range signals are **amplified** by a factor 4
- Current signal by analog differentiation of charge signals

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
Front-end of	electronics			

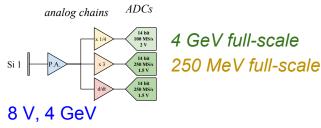

analog chains

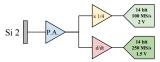


CsI(TI) +PD 8 V, 300 MeV Si-equivalent range

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
Front-end	electronics			

analog chains






8 V, 300 MeV

4 GeV full-scale

300 MeV Si-equivalent full-scale

8 V, 300 MeV

AZIA block	ToF technique	ToF ID	Synchronization	Conclusions
00000	00000	0000	000	00

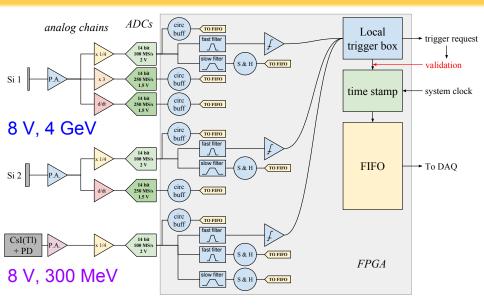
FAZ

6 sampling ADCs per telescope

Si 1	14 bit, 100 MHz 14 bit, 250 MHz 14 bit, 250 MHz	4 GeV full-scale charge signal 250 MeV full-scale charge signal current signal	QH1 QL1 I1
Si 2	14 bit, 100 MHz 14 bit, 250 MHz	4 GeV full-scale charge signal current signal	Q2 I2
CsI(TI)	14 bit, 100 MHz	300 MeV Si-eq. f.s. charge signal	Q3

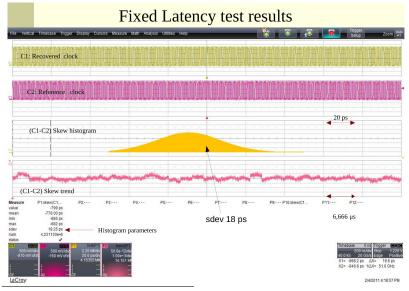
 FAZIA block
 ToF technique
 ToF ID
 Synchronization
 Conclusions

 0000000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<


Front-end electronics

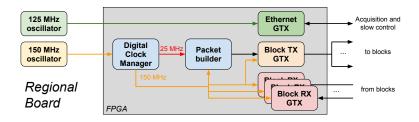
Xilinx Virtex-5 FPGAs

- Each FPGA processes signals from one telescope
 - signals stored in FIFO memories (up to 8192 samples)
- On-board real-time trapezoidal shaping
 - fast shaped signals to leading-edge discriminators
 - maximum of slow shaped signals to acquisition
 - no pole-zero correction

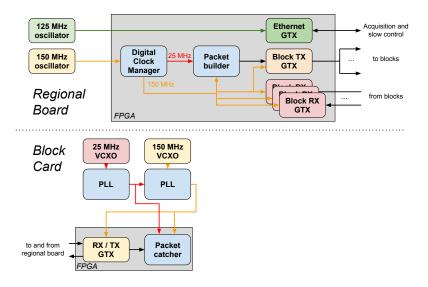

FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
○○○○○●○	00000	0000		00
Block Card				

Block card

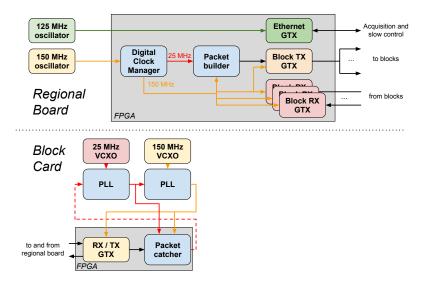
- Designed at INFN Napoli
- Takes data from FEE cards via the back plane and builds up part of the event record
- Features a 3 Gb/s optical link to regional board
 - 16-bit 8b/10b GTX transceiver
- Fixed latency transmission^a:
 - all ADC clocks have the same phase ($\sim 20\, \rm ps$ skew)
 - digitized signals don't have the 1 clock indetermination typical of asynchronous systems
- 25 MHz from fibre-recovered clock
 - PLL for jitter cleaning


^aR. Giordano et al, IEEE Trans. on Nucl. Science 58 (194), 2011

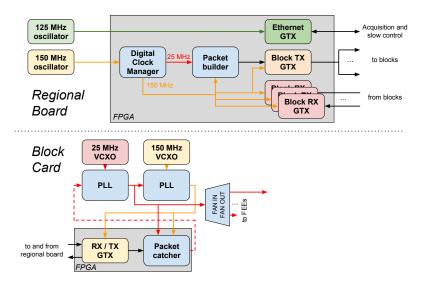
FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
○○○○○●○	00000	0000		00
Block Card				



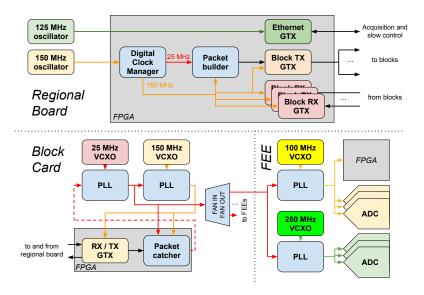
courtesy of A. Boiano, INFN - Napoli


FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions

FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
○○○○○○●	00000	0000	000	00



FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions



FAZIA block ○○○○○○●	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions

FAZIA block ○○○○○○●	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions

FAZIA block	ToF technique ●0000	ToF ID 0000	Synchronization	Conclusions
Identification	on methods			

(discussed in detail in the previous talk by D. Gruyer)

- $\Delta E E$ correlation
 - exploits the Bethe-Bloch energy loss relation
 - identification threshold due to first layer thickness

Pulse Shape Discrimination^a

- charge collection depending on the impinging nuclei
- $\bullet\,$ identification threshold corresponding to $\sim 50\,\mu m$ penetration

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

FAZIA block	ToF technique ●0000	ToF ID 0000	Synchronization	Conclusions 00
Identification	n methods			

(discussed in detail in the previous talk by D. Gruyer)

- $\Delta E E$ correlation
 - exploits the Bethe-Bloch energy loss relation
 - identification threshold due to first layer thickness

Pulse Shape Discrimination^a

- charge collection depending on the impinging nuclei
- $\bullet\,$ identification threshold corresponding to $\sim 50\,\mu m$ penetration

E - ToF correlation

- FAZIA implementation proposed here
- lowest identification threshold

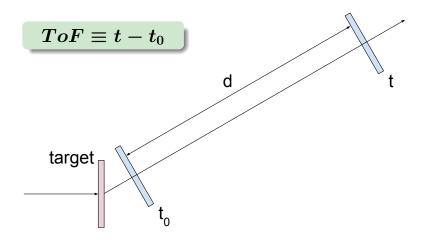
^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

FAZIA block	ToF technique ○●○○○	ToF ID 0000	Synchronization	Conclusions 00
Time of F	light measurer	ment		

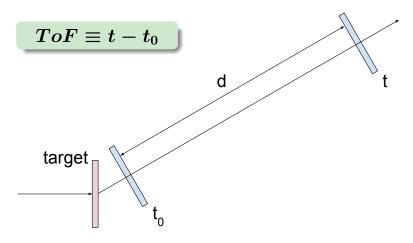
Time of flight
$$ToF \equiv t - t_0$$
Flight base $d = |\vec{x}(t) - \vec{x}(t_0)|$ Kinetic energy $E = \frac{1}{2}m\left(\frac{d}{ToF}\right)^2$

A start time mark is needed to measure ToF

FAZIA block	ToF technique ○●○○○	ToF ID 0000	Synchronization	Conclusions 00	
Time of Flight measurement					

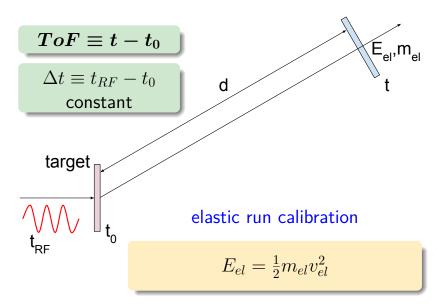

Time of flight $ToF \equiv t - t_0$ **Flight base** $d = |\vec{x}(t) - \vec{x}(t_0)|$ **Kinetic energy** $E = \frac{1}{2}m\left(\frac{d}{ToF}\right)^2$

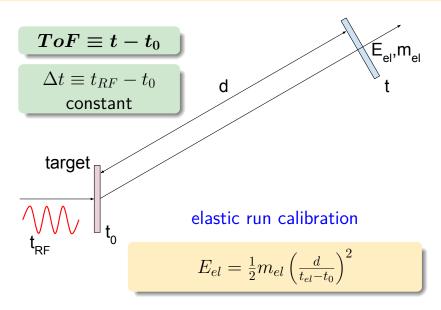
Time reference in FAZIA


- all acquired waveforms are referred to the validation time t_V
- applying a digital CFD algorithm to waveforms gives a time mark $t_{CFD} = t t_V + t_{off}$
- t_V is **the same** for all detectors

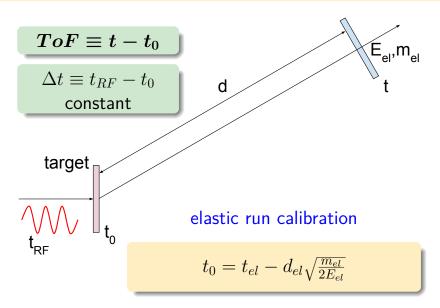
A start time mark is needed to measure ToF

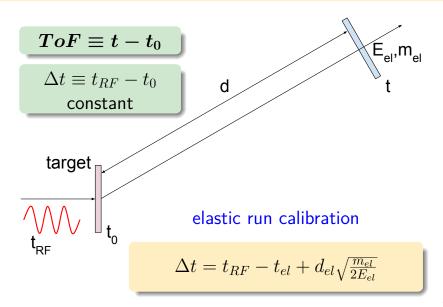


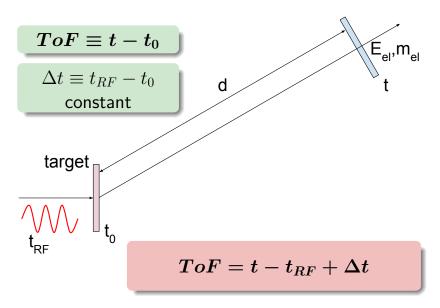

Start detector needed

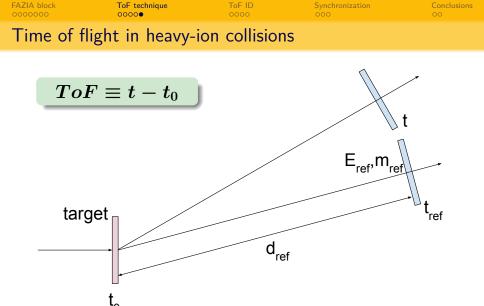


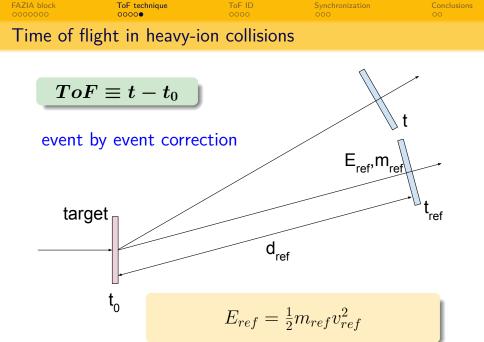
target

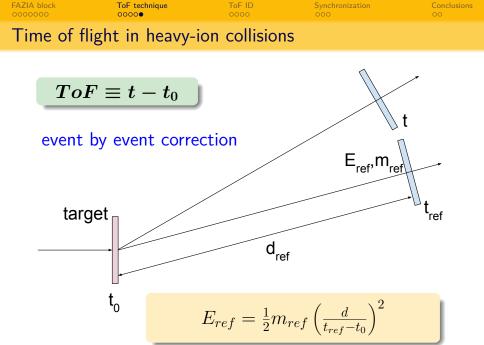


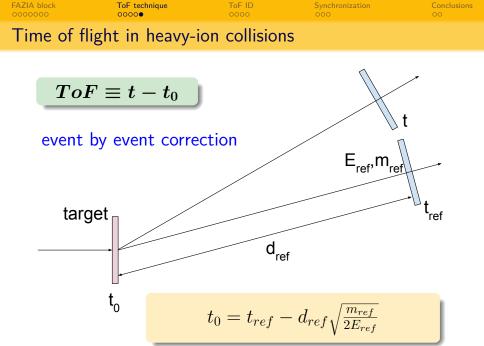


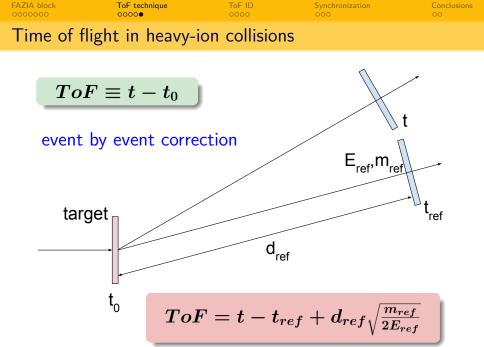












Proposed solution without a start detector or RF

 FAZIA block
 ToF technique
 ToF ID
 Synchronization
 Conclusions

 000000
 0000
 000
 000
 000
 000

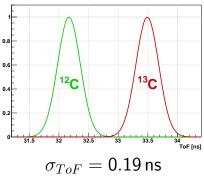
Expected identification capabilities

 ${}^{12}C - {}^{13}C$ discrimination

FAZIA flight base: 1 m

 FAZIA block
 ToF technique
 ToF ID
 Synchronization
 Conclusions

 000000
 00000
 0000
 000
 000
 000


Expected identification capabilities

 ${}^{12}C - {}^{13}C$ discrimination

FAZIA flight base: 1 m

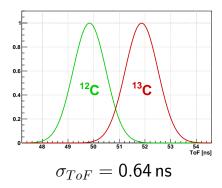
PSD mass discrimination:

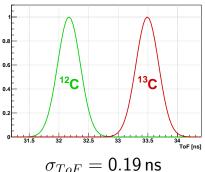
60 MeV

 FAZIA block
 ToF technique
 ToF ID
 Synchronization
 Conclusions

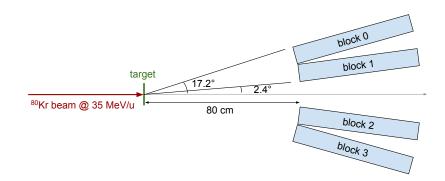
 000000
 00000
 000
 000
 000
 000

Expected identification capabilities

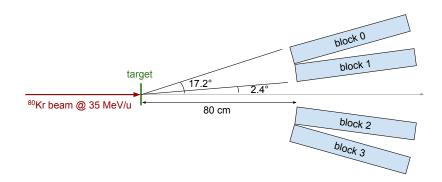

${}^{12}C - {}^{13}C$ discrimination

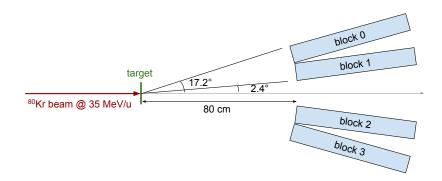

FAZIA flight base: 1 m

PSD identification threshold:

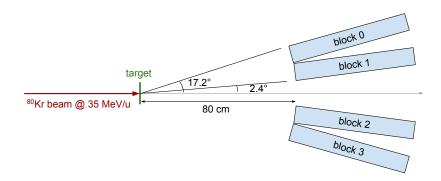

25 MeV

PSD mass discrimination: 60 MeV



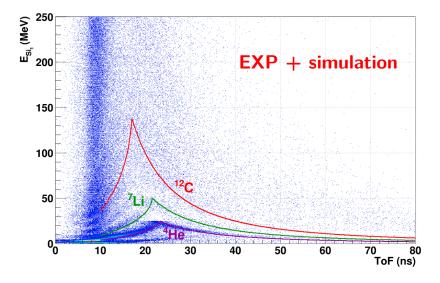


• First physics oriented experiment with FAZIA

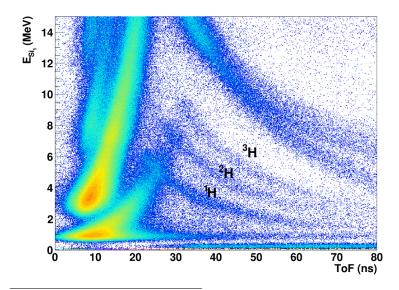


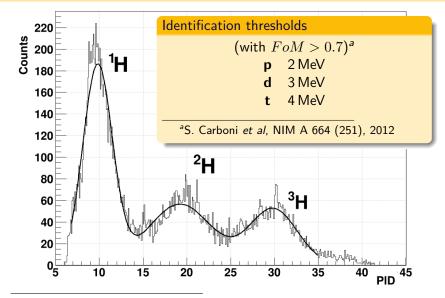
• First physics oriented experiment with FAZIA

 $\bullet\,$ Fully calibrated with mass ID up to $Z\sim24$



- First physics oriented experiment with FAZIA
- $\bullet\,$ Fully calibrated with mass ID up to $Z\sim24$
- In many events we have at least a fully identified particle which permits to recover t₀




courtesy of A. Buccola, Università di Firenze

courtesy of A. Buccola, Università di Firenze

courtesy of A. Buccola, Università di Firenze

FAZIA block	ToF technique 00000	ToF ID ○00●	Synchronization	Conclusions 00
ISOFAZIA experiment at LNS				

p,d,t stopped in the first Si layer

- PSD doesn't resolve Z < 3 isotopes
- E ToF allows to identify in mass Z = 1 down to 2 MeV

	A oversiment a	+ I NIC		
0000000	00000	0000	000	00
FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions

p,d,t stopped in the first Si layer

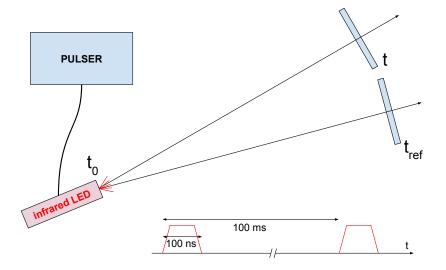
- PSD doesn't resolve Z < 3 isotopes
- E ToF allows to identify in mass Z = 1 down to 2 MeV

ToF accuracy limitations

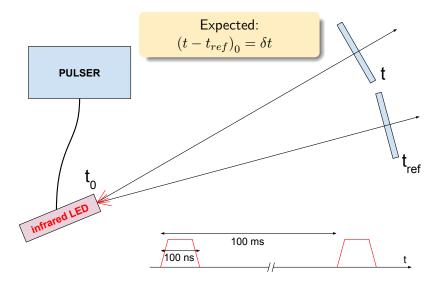
- even with a common clock the ADCs are not synchronous (delays introduced by fan-in/fan-out and ADC aperture jitter)
- a synchronization procedure is mandatory

	ovnoriment o	+ I NIC		
0000000	00000	0000	000	00
FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions

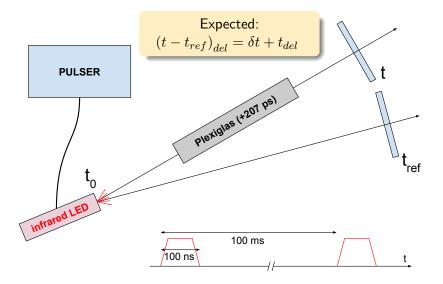
p,d,t stopped in the first Si layer

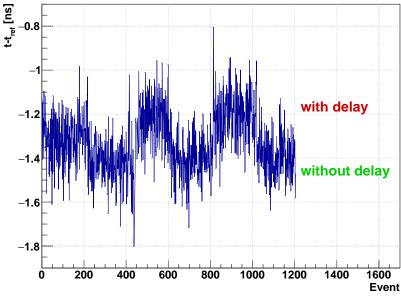

- PSD doesn't resolve Z < 3 isotopes
- E ToF allows to identify in mass Z = 1 down to 2 MeV

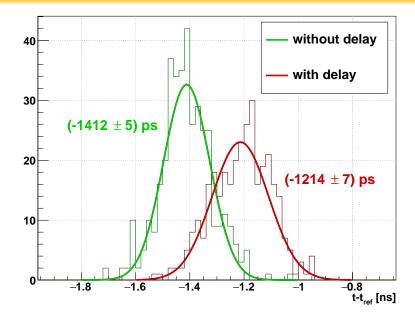
ToF accuracy limitations

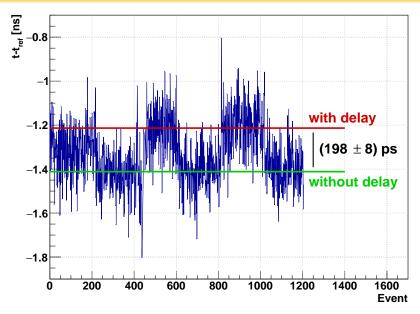

- even with a common clock the ADCs are not synchronous (delays introduced by fan-in/fan-out and ADC aperture jitter)
- a synchronization procedure is mandatory

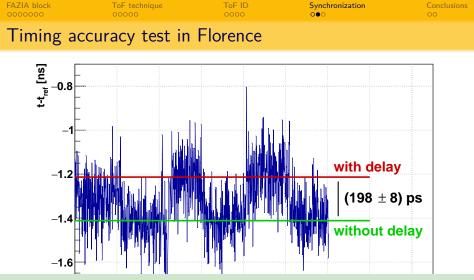
Illuminate all Si1 detectors with the same fast infrared pulse


FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization •oo	Conclusions









Expected $(t - t_{ref})_{del} - (t - t_{ref})_0 = t_{del} \simeq 207 \text{ ps}$ GOOD AGREEMENT

18/21

Event

0000000	00000	0000	000	00
FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions

FAZIAPRE experiment at LNS

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions 00
FAZIAPRE @	experiment a			

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED

During the FAZIAPRE experiment, the infrared LED was mounted inside the scattering chamber and was kept on during all the shift (at a 0.1 Hz rate) to trace channel delays

	00000	0000	00•	00
FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions

FAZIAPRE experiment at LNS

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED

During the FAZIAPRE experiment, the infrared LED was mounted inside the scattering chamber and was kept on during all the shift (at a 0.1 Hz rate) to trace channel delays

Calibration and identification still in progress...

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions • O
Summary and conclusions		าร		

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - observed time differences between channels up to 1-2 ns

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions • O
Summary an	nd conclusions			

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - $\bullet\,$ observed time differences between channels up to $1\text{--}2\,\text{ns}$
- Infrared LED pulses used to synchronize Si1 channels
 - very accurate method (error on the delay correction ${\sim}10\,{
 m ps})$
 - trace possible variations of the channel delay during the run

FAZIA block	ToF technique 00000	ToF ID 0000	Synchronization	Conclusions • O
Summary a	nd conclusion	S		

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - $\bullet\,$ observed time differences between channels up to $1\text{--}2\,\text{ns}$
- Infrared LED pulses used to synchronize Si1 channels
 - very accurate method (error on the delay correction ${\sim}10\,{
 m ps})$
 - trace possible variations of the channel delay during the run
- E tof correlation may significantly reduce the energy threshold for mass discrimination in FAZIA
 - even without any correction is possible to discriminate Z=1 isotopes down to $2\,{\rm MeV}$
 - $\bullet\,$ expected precision on time measurements: ${\sim}500\,\text{ps}$ after delay corrections

FAZIA block	ToF technique	T₀F ID	Synchronization	Conclusions
	00000	0000	000	• O
Summary an	d conclusions			

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - $\bullet\,$ observed time differences between channels up to $1\text{--}2\,\text{ns}$
- Infrared LED pulses used to synchronize Si1 channels
 - very accurate method (error on the delay correction ${\sim}10\,{
 m ps})$
 - trace possible variations of the channel delay during the run
- E tof correlation may significantly reduce the energy threshold for mass discrimination in FAZIA
 - even without any correction is possible to discriminate Z=1 isotopes down to $2\,{\rm MeV}$
 - $\bullet\,$ expected precision on time measurements: ${\sim}500\,\text{ps}$ after delay corrections
- LED pulses tested during FAZIAPRE experiment
 - we need particle identification and calibration to produce E ToF correlations (probably ready in September)
 - Stay tuned for EuNPC conference in Bologna!

FAZIA block	ToF technique	ToF ID	Synchronization	Conclusions
	00000	0000	000	O
	and the second second			

FAZIA collaboration

Thanks for your attention

Backup slides

Front-end electronics

HV generation

- DC/DC converters produce the Si detectors bias voltages:
 - 0-300 V for Si1 (140 V depletion voltage)
 - 0-400 V for Si2 (290 V depletion voltage)
- CsI(TI) photodiode bias voltage from the Power Supply card:
 - optocoupler switch on FEE card.

Front-end electronics

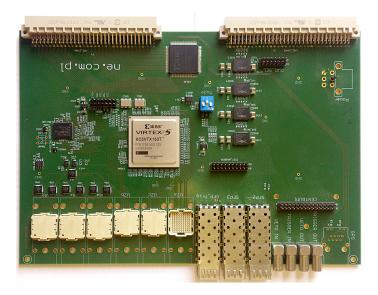
Back plane connector

- Power supply and CsI(TI) HV from power supply card
- Equalized 25 MHz clock distribution between FEE cards
- Star connection between FEE cards and block card:
 - FEE to BC: 2x400 Mb/s links (⇒ 800 Mb/s)
 - BC to FEE: 1x400 Mb/s link
- Slow control communication

Half bridge and power supply

Half Bridge

- Designed at INFN Napoli
- High power voltage conversion from 48 V DC input:
 - 22 V (14 A) DC
 - 5.5 V (70 A) DC

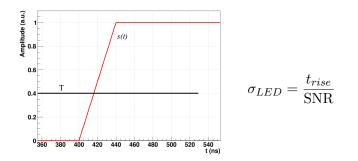

Power Supply

- Designed at INFN Napoli
- $\bullet\,$ Converts 22 V to 13 V, -9 V, ±5 V and CsI(TI) HV
- PIC monitors produced voltages together with 5.5 V from HB
 - power on/power off
 - under/over voltage protection
 - voltage/current limits

Regional Board

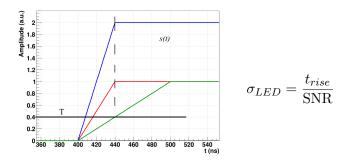
- Designed at Jagiellonian University, Krakow
- Features a Xilinx Virtex-5 FPGA
 - VHDL code has been written mainly at INFN Napoli
- 36x 3 Gb/s bi-directional optical links
 - to/from FAZIA blocks
 - fixed latency protocol
- 2x 1 Gb/s optical ethernet links (1000Base-SX)
 - $\bullet\,$ now only 1 is used \Rightarrow room for transmission speed increase
 - UDP protocol for low-latency transfer
- Possibility to connect GANIL **CENTRUM** module

Regional board



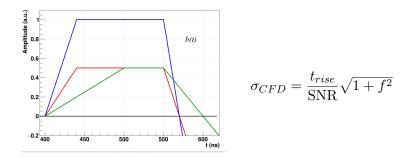
Regional Board tasks

- Slow control management of all the electronics
 - data transmission and slow control use the same optical fibre
- Trigger board:
 - multiple majority logic for trigger validation
 - trigger scaling by a settable factor
 - master/slave trigger operation (for coupling)
- Event building from data coming from all the blocks
 - it may add the CENTRUM timestamp to each event
- Transmission of acquired data to servers


• maximum speed achieved: $\sim 80\,\text{MB/s}~(\sim 640\,\text{Mb/s})$

Leading Edge Discriminator (LED)

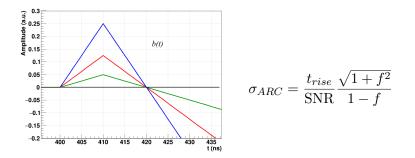
Intersection between a fixed threshold T and the signal s(t)


Leading Edge Discriminator (LED)

Intersection between a fixed threshold T and the signal s(t)

Subject to amplitude and rise time walk

Constant-Fraction Discriminator (CFD)


Zero crossing of the bipolar signal $b(t) = f \cdot s(t) - s(t - t_D)$

$$t_D \ge (1-f)t_{rise}$$

Subject to rise time walk

Time measurement methods

Amplitude and Rise time Compensated CFD (ARC-CFD)

Zero crossing of the bipolar signal $b(t) = f \cdot s(t) - s(t - t_D)$

$$t_D < (1-f)t_{rise}$$

FAZIA collaboration

Publications

- S. Barlini et al, Nucl. Instr. and Meth. A 600 (644-650), 2009
- L. Bardelli et al, Nucl. Instr. and Meth. A 654 (272), 2011
- S. Carboni et al, Nucl. Instr. and Meth. A 664 (251), 2012
- N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013
- S. Barlini et al, Nucl. Instr. and Meth. A 707 (89), 2013
- S. Barlini et al, Phys. Rev. C 87 (054607), 2013
- S. Piantelli et al, Phys. Rev. C 88 (064607), 2013
- R. Bougault et al, Eur. Phys. Jour. A 50 (47), 2014
- G. Pasquali et al, Eur. Phys. Jour. A 50 (86), 2014
- A. J. Kordyasz et al, Eur. Phys. Jour. A 51 (15), 2015
- F. Salomon et al, J. Instrum. 11 (C01064), 2016
- D. Gruyer et al, Nucl. Instr. and Meth. A 847 (142), 2017
- G. Pastore et al, Nucl. Instr. and Meth. A 860 (42), 2017