

Photon isolation

Inclusive Photon

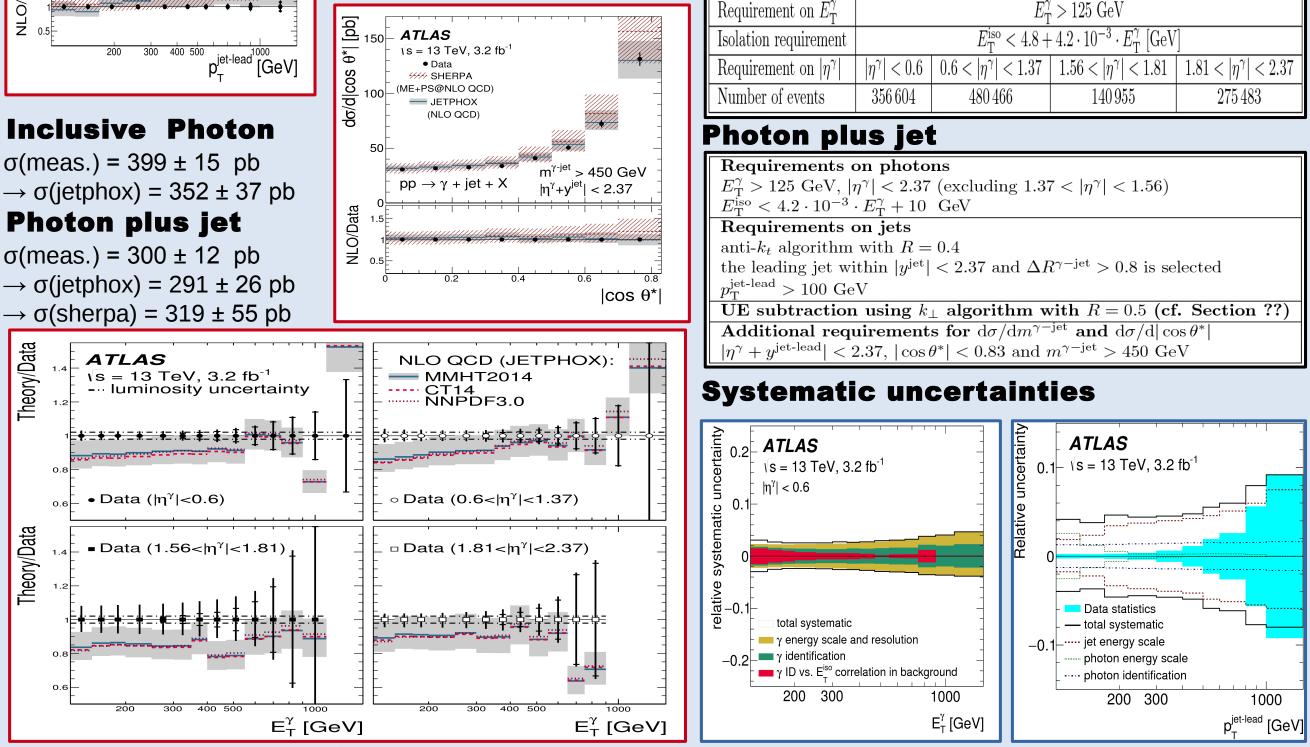
Test of perturbative QCD with photon final states at the ATLAS experiment.

Theor. calculations

 NLO QCD calculations using different PDF sets (Jetphox). \rightarrow Fragmentation included in the calculation.

- NLO QCD @0j and @1j for photon plus jets production $(Sherpa) \rightarrow Frixione$ isolation. (fragmentation removed)

• Theoretical uncertainties


 \rightarrow Main **uncertainties** due to renormalisation scales 10-30%. \rightarrow PDFs uncertainties about 1-3%.

Results

- Overall adequate description of the measurements by the NLO QCD calculations.

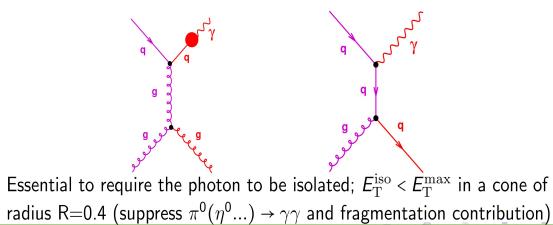
- Calculations overestimate the measurements at high values of leading jet p_{τ} .

 \rightarrow Experimental smaller than theoretical uncertainties! \rightarrow NNLO.

PHYSICS WITH PHOTONS

- Photon production allows to test QCD and constraint PDFs.

- Prompt photons represent a cleaner probe of a hard interaction than jet production.


- Inclusive photons can be produced by two main mechanism:

 \rightarrow Direct photon: γ produced in the hard interaction.

 \rightarrow Fragmentation: γ coming from high-p_T parton

fragmentation.

 $\sigma_{pp \to \gamma+X} = \sum_{i,j,b} \int dx_1 f_{i/1}(x_1, Q) \int dx_2 f_{i/2}(x_2, Q) \hat{\sigma}_{ij \to \gamma b} +$ $\sum_{i,j,a,b} \int_{z\min}^{1} dz \ D_{a}^{\gamma}(z,\mu_{f}) \int dx_{1} \ f_{i/1}(x_{1},Q) \int dx_{2} \ f_{i/2}(x_{2},Q) \ \hat{\sigma}_{ij \to ab}$

- Jets are reconstructed with the anti-kT algorithm, with R=0.4 from 3D topological clusters of calorimeter cells.

Inclusive photon

	Phase-space region			
Requirement on $E_{\rm T}^{\gamma}$	$E_{\mathrm{T}}^{\gamma} > 125 \ \mathrm{GeV}$			
Isolation requirement	$E_{\rm T}^{\rm iso} < 4.8 + 4.2 \cdot 10^{-3} \cdot E_{\rm T}^{\gamma} [{\rm GeV}]$			
Requirement on $ \eta^{\gamma} $	$ \eta^{\gamma} < 0.6$	$0.6 < \eta^{\gamma} < 1.37$	$1.56 < \eta^{\gamma} < 1.81$	$1.81 < \eta^{\gamma} < 2.37$
Number of events	356604	480466	140955	275483

Josu Cantero (Oklahoma State University) Phys. Lett. B 770 (2018) 473 (Inclusive Photon) Phys. Lett. B 780 (2018) 578 (Photon plus jet)

QCD@WORK 2018 (Matera, Italy): 25th-28th June

