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Abstract

The role played by non-extensive thermodynamics [1] in physical systems has been under intense

debate for the last decades. Some possible mechanisms that could give rise to non extensive stati-

stics have been formulated along the last few years, in particular the existence of a fractal structure

in thermodynamic functions for hadronic systems [2]. We investigate the properties of such fractal

thermodynamical systems and propose a diagrammatic method for calculations of relevant quan-

tities. Finally, the fractal scale invariance is discussed in terms of the Callan-Symanzik equation.

1. Tsallis Statistics and QCD Thermodynamics

Tsallis statistics constitutes a generalization of Boltzmann-Gibbs (BG) statistics, under the as-

sumption that the entropy of the system is non-additive. For two independent systems A and B

SA+B = SA+SB+(1−q)SASB , (1)

where the entropic index q measures the degree of non-extensivity [1]. Let us define the q-

exponential e
(±)
q (x) = [1± (q−1)x]±1/(q−1) , with e

(+)
q (x) defined for x ≥ 0 and e

(−)
q (x) for x < 0,

and the q-log function log(±)
q (x) = ±(x±(q−1)− 1)/(q− 1) . Then the grand-canonical partition

function for a non-extensive ideal quantum gas is [3]

logΞq(V,T,µ) = −ξV

∫

d3p

(2π)3 ∑
r=±

Θ(rx) log(−r)
q

(

e
(r)
q (x)−ξ

e
(r)
q (x)

)

, (2)

where x = β (Ep − µ), the particle energy is Ep =
√

p2+m2, with m being the mass and µ the

chemical potential, ξ = ±1 for bosons and fermions respectively, and Θ is the step function.

Eq. (2) reduces to the Bose-Einstein and Fermi-Dirac partition functions in the limit q → 1.

The thermodynamics of Quantum Chromodynamics (QCD) in the confined phase can be studied

within the HRG approach, which is based on the assumption that physical observables in this phase

admit a representation in terms of hadronic states which are treated as non-interacting and point-

like particles [4]. These states are taken as the conventional hadrons listed in the review by the

Particle Data Group. Within this approach the partition function is then given by [3, 5]

logΞq(V,T,{µ}) = ∑
i

logΞq(V,T,µi) , (3)

where µi refers to the chemical potential for the i-th hadron. We summarize our results in Fig. 1.
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Fig. 1: Left: Chemical freeze-out line T = T (µB). Right: Equation of State (EoS).

2. Tsallis Statistics and Thermofractals

The emergence of the non-extensive behavior has been attributed to different causes: long-range

interactions, correlations and memory effects [6]; temperature fluctuations; and finite size of the

system. We will study a natural derivation of non-extensive statistics in terms of Thermofractals.

These are systems in thermodynamical equilibrium presenting the following properties [2, 7]:

1. Total energy is given by:

U = F +E , (4)

where F ≡ kinetic energy, and E ≡ internal energy of N ′ constituent subsystems.

2. Constituent particles are thermofractals: the distribution PTF(E) is self-similar or self-affine

at some level of the subsystem hierarchy PTF(E) is equal to those in the other levels.

3. At level n the phase space is so narrow that one can consider PTF(En)dEn = ρdEn.

The energy distribution of a thermodynamical system is given, according to BG statistics, by

P(U)dU = Aexp(−U/kT )dU , (5)

where A is a normalization constant. The phase space, in the case of thermofractals, must inclu-

de momentum degrees of freedom of free particles as well as the internal degrees of freedom.

According to property 2 of self-similar thermofractals [2], the internal energy is given by

dE =
F

kT
[PTF(ε)]

ν
dε ,

ε

kT
=

E

F
, (6)

where ν is an exponent to be determined. Then, the total energy distribution is given by

P(U)dU = A′F
3N
2 −1 exp

(

−
αF

kT

)

dF [PTF(ε)]
ν

dε , α = 1+
ε

kT
, (7)

with N ′ = N + 2
3

an effective number of particles taking into account the internal degrees of free-

dom. After integration in F , the thermodynamical potential is given by

Ω =
∫

dUP(U) =
∫ ∞

0
A

[

1+
ε

kT

]−3N/2
[

P̃(ε)
]ν

dε , A = Γ

[

3

2
N

]

(kT )
3
2NA′ . (8)

It is possible to impose the identity

P(U) ∝ PTF(ε) , (9)

corresponding to a self-similar solution for the thermofractal probability distribution. Then, the

simultaneous solution for Eqs. (8) and (9) is obtained with [7, 8]

PTF(ε) = A

[

1+
ε

kT

]−3N
2

1
1−ν

PTF,(1)(ε) = A(1)eq

[

−
ε

kτ

]

. (10)

Of course one has ε = ∑N′

i=1 ε
(1)
i , so that at the first level of the thermofractal hierarchy one finds

subsystems that are thermofractals with effective energies ε (1) ∼ ε/N. The distribution of thermo-

fractals then obeys Tsallis statistics with τ = 2(1−ν)
3

T and q−1 = 2
3N
(1−ν).

3. Diagrammatic Representation and Callan-Symanzik Equation

Thermofractals are scale invariant, and this should be accomplished with the scale invariance

of the distribution of kinetic and internal energy. Then

F (0)

T (0)
=

F (n)

T (n)
=⇒ λn :=

E(n)

E(0)

(

1

N

)
n

1−D

, (11)

where D is the fractal dimension. From the thermofractal structure one can obtain the fractal

dimension of hadrons, resulting in D = 0.69 [2], a value close to that resulting from intermittence

analysis [9]. It is possible to have a diagrammatic representation of the probability densities of

thermofractals that can facilitate calculations of Ω and other relevant quantities [8]. The basic

diagrams are summarized in Fig. 2.

Fig. 2: Left: Basic diagrams for thermofractals and their mathematical expressions. Right: Exam-

ple of a tree graph representing different levels of a thermofractal.

On the other hand, the vertex function of thermofractals can be written in the form

Γ(E,ε,T ) ∝ (kT )−(1−D)g

[

N′

∏
i=1

(

2π
Ei

kTi

)−3/2
]

[PTF(εi)]
ν . (12)

Then one can derive the Callan-Symanzik equation for thermofractals, which writes

[

M
∂

∂M
+

N′

∑
i=1

βi

∂

∂mi

+βg

∂

∂ ḡ
+ γ

]

Γ = 0 , (13)

where mi ≡ Ei is the thermofractal mass, which is identified with the thermofractal internal energy,

βi = M
∂mi

∂M
, βḡ = M

∂ ḡ

∂M
, (14)

and we have defined the effective coupling

ḡ(m,ε, t) = g
N′

∏
i=1

[

PTF

(

m(pi)e
t/d

M0

)]ν/2

, t :=−d log(M2/M2
0) . (15)

4. Conclusions

We have reviewed the non-extensive statistics in the form of Tsallis statistics of a quantum gas

at finite T and µ , and applied it to study the EoS and phase diagram of QCD.

We have investigated the structure of a thermodynamical system presenting fractal properties,

and shown that it naturally leads to non-extensive statistics.

A diagrammatic formulation for practical calculations with the fractal structure was introduced.

Based on the scale invariance of thermofractals, the Callan-Symanzik equation was obtained.

This opens the opportunity to develop a ’field theoretical approach’ for thermofractals, leading

to a possible theoretical understanding of the non-extensive properties of hadronic systems [10].
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