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Motivation

The Skyrme model is a classical field theory which can be motivated
from QCD by a 1

Nc
-expansion.

The Skyrme models is built of pion fields, and has soliton solutions
known as Skyrmions that are viewed as “classical” atomic nuclei.

The first step is to understand static classical solutions.

By restricting to minimal energy configurations we can perform a
zero-mode quantisation (FR constraints).

If we want to go beyond we need to know how Skyrmions deform
when they vibrate and scatter.

This leads to a vibrational quantisation.

Further improvements are also expected by taking into account how
Skyrmions deform when they are spinning and isospinning.

Steffen Krusch Quantisation of Skyrmions



The Skyrme model

The Skyrme energy can be written as E =
∫
E dx3, with

E =
∑
i

∂iφ · ∂iφ+
1

2

∑
i

(∂iφ · ∂iφ)2 −
1

2

∑
i,j

(∂iφ · ∂jφ)2 + 2m2(1− φ0) ,

where the vector
φ =

(
φ0, φ1, φ2, φ3

)
is a function of space x.

The vector φ satisfies φ · φ = 1 or in components
φ20 + φ21 + φ22 + φ23 = 1. Hence, the fields φ parametrize a 3−sphere.

For |x| the vector φ tends to φ = (1, 0, 0, 0). So, we can do a
“one-point compactification” and think of physical space R3 ∪ {∞}
as a 3−sphere.
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Skyrmions

Mathematically, we have a map
S3 → S3 and the degree B of this map
counts the number of solitons.

These solitons are known as Skyrmions.

How do we visualize them?

The degree B can be calculated as

B =

∫
B dx3,

where B is the topological density.

One option is to plot level sets of
constant topological density B.

Figure : B = 4 Skyrmion
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The B = 1 Skyrmion

Spherically symmetric
configuration

φ0 = cos f (r), φj = sin f (r)xj ,

where r = |x|, f (0) = π and
f (∞) = 0.

Note if we rotate the hedgehog
in space (xj) and then rotate
the φi in the right way, then
can we get back where we
started. The hedgehog is
symmetric under rotations.
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A colour scheme

We want to label the direction of φj in
terms of colours.

The figures shows the hedgehog
looking down the z−axis.

Again the surface corresponds to
B = const. For the hedgehog, this is
the surface of a sphere.

The direction of φj can be expressed in
polar coordinates (θ, ϕ). Then we can
colour the surface according to value of
ϕ along the colour circle:

red, yellow, green,
cyan, blue, magenta.
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Classical Skyrmion scattering: Rotation without Rotating

The initial and the final Skyrmions are oriented such that one
Skyrmion is rotated in π which is known as the attractive channel.

During scattering the Skyrmions do not rotate.

However, after scattering the Skyrmions are rotated by π
2 .
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Quantisation

In quantum field theory, there are two types of particles: Bosons
and Fermions.

When a Boson wavefunction is rotated by 2π, it remains invariant.
However, if a Fermion wavefunction is rotated by 2π, then it
changes by a factor of (−1).

If two identical particles are exchanged then nothing happens to
Bosons, whereas the wavefunction of the Fermions changes by a
factor of (−1).

In quantum field theory, Bosons are usually described by scalar,
vector or tensor fields, whereas Fermions are represented by spinors.

Steffen Krusch Quantisation of Skyrmions



Finkelstein-Rubinstein constraints

Key observation:

π1(QB) = Z2,

where QB is the space of
Skyrme configurations
with charge B.

Define wavefunctions ψ
on the covering space of
configuration space:

ψ : CQB → C.

Impose ψ(q̃1) = −ψ(q̃2).

Symmetries of Skyrmions
induce loops in
configuration space.
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Finkelstein-Rubinstein constraints

Induced action of SO(3)× SO(3) symmetries on ψ :

exp (−iα n · L) exp (−iβN ·K)ψ(q̃) = χFRψ(q̃),

where χFR =

{
1 if the induced loop is contractible,
−1 otherwise.

Here L and K are the body-fixed angular momentum operators in
space and target space, respectively.

Can we calculate χFR ∈ π1(QB)?

Yes, there is a simple formula:

χFR = (−1)N where N =
B

2π
(Bα− β) .

(under some technical assumptions)
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Rigid Body Quantisation — Key idea

Calculate a minimal energy Skyrmion for a given charge B.

Derive its symmmetries.

Use Finkelstein-Rubinstein constraints to find allowed states with
given spin J and isospin I .

The energy of a state |J〉|I 〉 can be calculated (roughly) via

E =M+
~2J(J + 1)

2ΘJ
+

~2I (I + 1)

2ΘI
,

where M is the classical mass of the Skyrmion, and ΘJ and ΘI are
spin and isospin moments of inertia.

Steffen Krusch Quantisation of Skyrmions



Rigid Body Quantisation - Discussion

This approach is successful for calculating ground states for small
nuclei, for B = 1 to 4, and for most small nuclei with even B.

More detailed studies also showed that excitation spectra can be
reproduced fairly well, eg for 6

3Li and other small even nuclei.

For 12
6 C the ground state and the Hoyle state have been calculated

from two different Skyrme configurations.

There are predictions for ground and excited states when symmetries
are imposed, e.g. for Td and Oh symmetric Skyrmions.

Electromagnetic form factors have been calculated.
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Beyond Rigid Body Quantisation

While there has been a lot of progress, there are also drawbacks. For
example, the ground states of nuclei with odd B are not described
very well at all. Furthermore, Skyrmions are generally too tightly
bound.

Key idea: Allow for deformations of Skyrmions during quantisation:

Classically, Skyrmions deform when they rotate or isorotate.
Classically, Skyrmions also deform when they vibrate or scatter.
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Vibrational Quantisation

Manton, Leese and Schroers quantisd the attractive channel of two
B = 1 Skyrmions in the instanton approximation and calculated
various properties of the deuteron 2

1H.

Halcrow quantised B = 7 and derived the correct ground state and a
good match to excited states of 7

3Li.

Halcrow, King and Manton quantised a two-dimensional scattering
space of B = 8 skyrmions to quantise 16

8 O.

Steffen Krusch Quantisation of Skyrmions



Vibrational Quantisation II

When we go beyond the zero mode quantization we need to
construct a manifold N of Skyrme configuration parametrized by
coordinates yi .

Then the Quantum Hamiltonian becomes

Ĥ = −~2

2
4+ V (yi ),

where the kinetic energy operator is the Laplace-Beltrami operator

4 = det(g)−
1
2 ∂i

(
det(g)

1

g ij∂j

)
and g is the metric on N, and V (yi ) is the potential on N.

For the B = 2 a natural choice of vibrational parameter is the
separation of two B = 1 Skyrmions in the attractive channel.
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16
8 O quantisation

For 16
8 O the manifold N is

M × SO(3), where M is the six
punctured sphere.

This can be mapped to the
hyperbolic plane.

Then the vibrational wave
function can be found by
solving

−4vib.φ+ Vφ = (E − EJ)φ,

and taking the relevant
symmetries into account.
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Some wave functions

Here we show the ground state, the first excited state and the lowest
state with negative parity.

The wave function of the ground state is localised around the
minimum energy solution (tetrahedron).

The first excited state is localised around two different minima
(tetrahedron and square).

The negative parity state actually vanishes at the minimum energy
configuration.
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The energy spectrum of 16
8 O

This is energy spectrum (for I = 0) by Halcrow, King and Manton.

The calculated states of positve/negative parity are displayed as
solid circles/triangles, while hollow symbols correspond to the
relevant experimentally observed states.
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Isospinning Skyrmions

If we want to understand how Skyrmions deform when isorotating in
colour space, we need to minimize the total energy

E =M+
1

2
U−133 K 2

3 ,

where K3 is the conserved body-fixed isospin angular momentum and

U33 = 2

∫ (
φ21 + φ22

)
(1 + ∂kφl∂kφl)− (φ1∂kφ2 − φ2∂kφ1)2 d3x,

= 2I1,2 + 2I1,2 × e2 − Ucross
33 . (1)

To minimise E we need increase U33 while keeping Skyrmion mass
M as small as possible.

It can be shown that∫
R3

(
φ21 + φ22

)
B d3x = B

∫
S3

(
φ21 + φ22

)
d3φ =

B

2
,

where B can be viewed as the Jacobian of the map φ.
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Isospinning Skyrmions II

We want to develop an intuition of how isospinning Skyrmions
deform as we increase K3.

First, we amend our colouring scheme. The polar angle ϕ still
represents the colour circle. Now, the angle θ measures how much
“colour” there is, where θ ≈ 0 is black, θ ≈ π

2 is colourful, and

θ ≈ π is white.

Conjecture: The main contribution comes from increasing the
integral

I1,2 =

∫ (
φ21 + φ22

)
d3x,

which corresponds to the amount of “colour” in space.

However, since ∫
R3

(
φ21 + φ22

)
B d3x =

B

2

we cannot freely, decrease the amount of black and white in space.
Since I1,2 does not depend on the baryon density, the baryon density
will decrease in regions that are coloured and increase in regions that
are black or white.
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B = 2 : Isospinning and colour

Here we consider the B = 2 Skyrmion
oriented such that the hole in the
middle is blue/purple.

For zero isospin, we have the familiar
torus.

For fast isospin the “colourful” hole in
the middle expands.

Black and white regions are around the
equation, so baryon density moves
there, flattening the torus slightly.

Finally, the baryon density increases
around black and white regions,
breaking axial symmetry to D4.
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B = 2 : Isospinning and rescaling

The flattening of the torus can
be captured by rescaling in
space, namely,

x1 7→ λ1x1, x2 7→ λ2x2, x3 7→ λ3x3.

The top graph shows that a
rescaling to flatten the torus
decreases the energy.

The bottom graph shows how
well the rescaling approximates
the energy of the numeric
calculation.

The “squaring up” is not
captured by rescaling. It has
only a small effect on the
energy.
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B = 3 : Isospinning and colour

For B = 3 we consider a tetrahedron,
where two corners are white/black,
with two opposing edge also
white/black.

Initially, φ21 = φ22 = φ23 in the hole.

The triangle distorts such φ23 in the
hole decreases.

The white edge takes baryon density
away from the corners that connects it,
and moves away from the hole. The
same happens for the black edge.

The four “colourful” edges move
towards the hole.

Thereby, the two triangular faces with
a white or black edge transform into
two joined kites.
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Conclusion

The Skyrme model is a classical model for the strong interaction
which needs to be quantised to make predictions in nuclear physics.

The simplest approximation is the zero-mode quantisation which
calculates states based on a single minimal energy configuration and
its zero-modes.

Currently there are various approaches to improve the predictions of
the Skyrme model:

Modify the Skyrme model such that the classical energies are more
degenerate, i.e. closer to the energies of atomic nuclei (near-BPS
models, alternative mass terms,. . . )
Vibrational quantisation
Spinning and isospinning Skyrmions

We discussed vibrational quantization.

We also discussed how to obtain a better understanding of
isospinning Skyrmions.
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B = 4 : White/Black Vertices

For B = 4 we consider different cases.

First, the vertices are black/white, and
are already the highest density points.
The hole of the cube has φ3 = 0.

The density flows further to the
vertices, the hole expands.

This produces a “pointier” and larger
cube.
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B = 4 : Different colours

Here are two examples where the cube splits into two tori, for two
different colourings.

Note that for fixed K3, both have higher energy than the previous
colouring.
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B = 8 : Different break-up configurations

Here are two different colourings for B = 8 which split up into 2
cubes and 4 tori, respectively.
All B = 8 configurations that we have considered split up.
It is difficult to tell numerically, which one has lower energy.
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