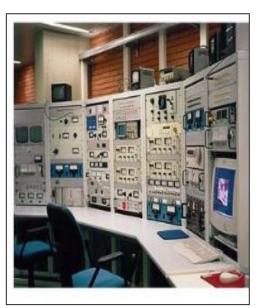
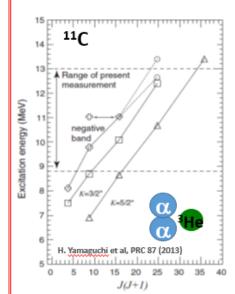

Opportunities of studying clustering in nuclei with the TTT3 tandem accelerator in Naples

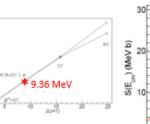

The table-top TTT-3 van de Graaf tandem accelerator in Naples

- A van de Graaf tandem accelerator is operative in Naples since **1977**. It was manufactured by HVEC. Maximum terminal voltage: **3.34 MV** (march 2012).
- It uses two sources: a **RF source** (¹H, ²H, ⁴He, ¹⁵N, ¹⁶O, ¹⁰F beams) and a Kingston **sputtering source** (e.g. ¹H, ²H, ⁶/¬Li, ⁰Be, ¹⁰/¹B, ¹²C ... beams). 100 eV ripple.
- Three reaction chambers and five channels for the beam transportation (also in air). A dedicated FAIR-VME acquisition system.
- It was the first accelerator for **radioactive beams** (⁷Be, in batch mode) operative in Italy.



¹¹C structure from 10 B(p, α_0)⁷Be reaction

¹¹C is a proton-rich nucleus (1-n hole) \rightarrow existence of α + α +³He cluster structure



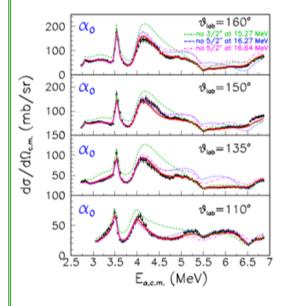
¹¹C spectroscopy → not well understood above the alpha threshold

Yamaguchi → negative parity cluster band

New experiment in Naples: p + ¹⁰B to populate high energy states in ¹¹C compound nucleus

 7 Be+α decay channel: high sensitivity to cluster states, but unfavorable kinematics

(a) 10 B(p,ρ₀) 150 10 (d) 10 B(p,ρ₀) 130 10 10 B(p,ρ₀) 130 10 10 10 H(p,ρ₀) 10 H(p,ρ₀)


E_x (MeV)

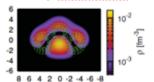
Inverse absorber technique → overcome the experimental difficulties and estimate integrated cross sections and S-factors ...

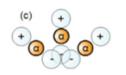
... that were fitted with the R-matrix code AZURE2 to refine the spectroscopy of ¹¹C.

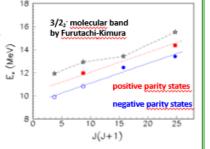
A new 5/2 state at 9.36 MeV with large Γ_{α} is candidate to belong to the negative parity band.

13C structure from α+9Be resonant scattering

 13 C is the simplest system that can be built starting from a 3α structure coupled with a valence neutron.

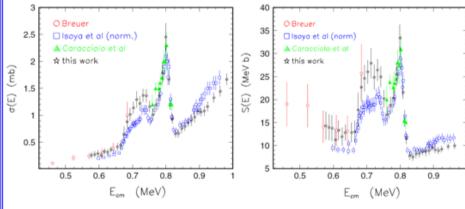

Its structure and spectroscopy is a benchmark for all the models trying to describe clustering in neutron rich nuclei, but ...


... above the α threshold (10.65 MeV), the spectroscopy is highly uncertain! (see also I. Lombardo poster)


New measurement of a+9Be resonant elastic and inelastic scattering in Naples (≈150 energy changes).

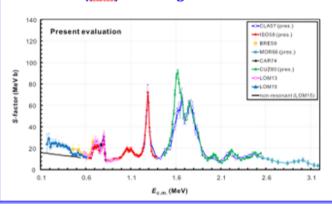
The R-matrix analysis of excitation functions at several angles, coupled with ${}^{9}\text{Be}(\underline{\alpha},\underline{n})$ reaction data \rightarrow revision of ${}^{13}\text{C}$ spectroscopy

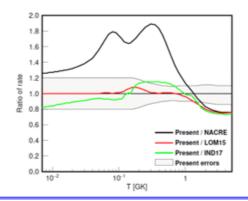
Analysis of level scheme → naïve indication of a negative parity band with molecular-like nature, as suggested by Furutachi and Kimura, PRC 81 (2010).



²⁰Ne spectroscopy and the ¹⁹F(p, α)¹⁶O reaction

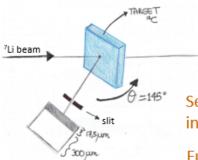
A new measurement of the $^{19}F(\underline{p},\underline{\alpha})^{16}O$ reaction \rightarrow nuclear structure (^{20}Ne) and astrophysics (fluorine destruction in stars).



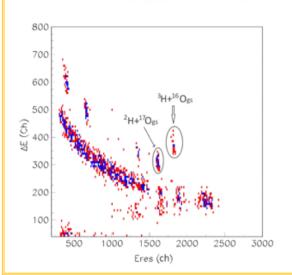

Low energy: broad states.

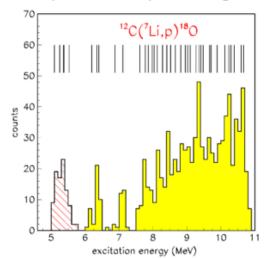
New exp. at LNL: low energy data

New react. rate


In 2017 \rightarrow collaboration with JUNA people (J.J. He et al) for a general revision of the 19 F(p,α) 16 O integrated cross sections and reaction rate.

¹⁸O* via sub-barrier α-transfer induced by ⁷Li


Good quality low energy ^7Li beams were used for α -transfer reactions on light targets. A test example was constituted by the $^7\text{Li}+^{12}\text{C} \rightarrow \text{p}+^{18}\text{O}$ at 8.08 MeV



Good quality low energy 7 Li beams were used for α -transfer reactions on light targets. A test example was constituted by the 7 Li+ 12 C \rightarrow p+ 18 O at 8.08 MeV

Selection of protons: region of high level density in ¹⁸O; nevertheless some structure is seen.

Future: $^{7}\text{Li}+^{9}\text{Be} \rightarrow \text{p}+^{15}\text{C}$ to study clustering in ^{15}C

