A general ideal multifragmentation kinematics algorithm for nuclear physics, a binary reaction approach.

José Francisco Favela Pérez

francisco.favela@ct.infn.it

objective

We want a simple (ideal) natural generalization of 2 body kinematics, something in the same spirit for more bodies.
We want as input:

objective

We want a simple (ideal) natural generalization of 2 body kinematics, something in the same spirit for more bodies.
We want as input:

- The masses.

objective

We want a simple (ideal) natural generalization of 2 body kinematics, something in the same spirit for more bodies.
We want as input:

- The masses.
- The excitation energies.

objective

We want a simple (ideal) natural generalization of 2 body kinematics, something in the same spirit for more bodies.
We want as input:

- The masses.
- The excitation energies.
- Define unambiguosly a particular fragmentation.

objective

We want a simple (ideal) natural generalization of 2 body kinematics, something in the same spirit for more bodies.
We want as input:

- The masses.
- The excitation energies.
- Define unambiguosly a particular fragmentation.
- Constrict all but one of the particles @ the end of the fragmentation in the lab system.

objective

We want a simple (ideal) natural generalization of 2 body kinematics, something in the same spirit for more bodies.
We want as input:

- The masses.
- The excitation energies.
- Define unambiguosly a particular fragmentation.
- Constrict all but one of the particles @ the end of the fragmentation in the lab system.
We need a data structure (a tree) to do this. Then somehow do kinematics on the tree.

BRT and solutions

To solve the BRT is to assign to every node at least one lab velocity (or also v_cm) vector.

BRT structure

BRT structure

- essentially 2 types of structures.
- self similar.
- leaf structure.

Strategy: solve it locally. Propagate info between nodes. We'll assume that it was previously solved in the cm system.

BRT structure

- essentially 2 types of structures.
- self similar. We'll need recursion.
- leaf structure.

Strategy: solve it locally. Propagate info between nodes. We'll assume that it was previously solved in the cm system.

binary example

We must abstract into node notation.

binary example

We must abstract into node notation.

binary example

We must abstract into node notation. Two solutions.

ternary example

intersect with what?!

ternary example

gifAnim

B)

Line pull

Line pull while standing on the root ejectile node.
\#the pull works on any two lines

they have to be in opposite direction,

ternary example

4 solutions?!

B)

Line pull

Line pull while standing on the root ejectile node.
\#the pull works on any two lines

ternary example

4 solutions?! it's invertible!

B)

Line pull

\#the pull works on any
Line pull while standing on the two lines

Every point in the pulled line can be uniquely traced back to each of the constricted nodes.

ternary example

4 solutions?! it's invertible!

B)

Line pull

Line pull while standing on the root ejectile node.
\#the pull works on any two lines

Every point in the pulled line can be uniquely traced back to each of the constricted nodes.

Come to my poster!!

- Generalization of the algorithm.
- Experimental data of a ternary reaction (PRC). 4 solution case.
- Software (still in alpha).
- Discuss more generalizations.
- Discuss potential applications.

