Comparison of Transport Codes Under Controlled Conditions

Hermann Wolter, University of Munich

International Workshop on Multi facets of EOS and Clustering (IWM-EC 2018) Catania, Italy, May 22-25, 2018

Goal: to determine the Equation-of-State of nuclear matter

Experimentalists are taking big steps to improve their tools

Chimera-FAZIA

Transport theory for HIC

$$\begin{split}
&\overbrace{\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{m} \cdot \vec{\nabla}_{r} - \vec{\nabla}_{r}U \cdot \vec{\nabla}_{p}\right) f(\vec{r}, \vec{p}; t) = I_{coll}(\vec{r}, \vec{p}; t), \quad (1)} \\
&\text{with the collision term} \\
&I_{coll} = \frac{g}{(2\pi\hbar)^{3}} \int d^{3}p_{1}d\Omega v_{rel} \frac{d\sigma^{med}}{d\Omega} [f'f'_{1}(1-f)(1-f_{1})] \\
&-ff_{1}(1-f')(1-f'_{1})], \quad (2)
\end{split}$$

$$\begin{split}
\Psi(\vec{r}_{1}, \dots, \vec{r}_{A}; t) = \prod_{i=1}^{m} \phi_{i}(\vec{r}_{i}; t), \\
&\phi_{i}(\vec{r}_{i}; t) = \frac{1}{[2\pi(\Delta x)^{2}]^{\frac{3}{4}}} \\
&\times \exp\left\{-\frac{[\vec{r}_{i} - \vec{R}_{i}(t)]^{2}}{4(\Delta x)^{2}}\right\} e^{(i/\hbar)\vec{P}_{i}(t)\cdot\vec{r}_{i}}. \\
f(\vec{r}, \vec{p}; t) = \frac{(2\pi\hbar)^{3}}{gN_{TP}} \sum_{i=1}^{N_{TP}} G(\vec{r} - \vec{r}_{i}(t)) \tilde{G}(\vec{p} - \vec{p}_{i}(t)). \\
\begin{aligned}
\frac{d\vec{r}_{i}}{dt} &= \vec{\nabla}_{p_{i}} H \quad \text{and} \quad \frac{d\vec{p}_{i}}{dt} = -\vec{\nabla}_{r_{i}} H . \\
\end{aligned}$$

Increasing constraints from Neutron star observation: mass-Radius relation, NS mergers

Theory also needs to shape up their tools: --> test and improve reliability of transport calculations Aim of this talk:

- discussion of transport approaches to heavy-ion collisions (HIC)
- not interpretation of data,
 - but accuracy of description of transport approaches
- comparison of transport codes with identical physical input
- \rightarrow among each other for HIC
- \rightarrow and in box calculations with exact limits in nuclear matter
- highlight the role of fluctuations in the description of HIC

On behalf of the Code Comparison Project

- of the order of 30 participants
- core group:
- Maria Colonna (Catania), Akira Ono (Sendai),
- Yingxun Zhang (CIAE, Beijing), Jun Xu (SINAP, Shanghai), Betty Tsang (MSU),
- Pawel Danielewcz (MSU), Jongjia Wang (Houzhou), HHW (Munich)

Transport theory: based on a chain of approximations from real-time Green functions via Kadanoff-Baym eqs. to Boltzmann-Vlasov eq. (semi-classical , quasi-particle appprox.)

In practice: two families of transport approaches

Boltzmann-Vlasov-like (BUU/BL/SMF)

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} - \vec{\nabla} U(r) \vec{\nabla}^{(p)} \right) f(\vec{r}, \vec{p}; t)$$

= $I_{coll} [\sigma^{in-med}] + \delta I_{fluc}$

Dynamics of the 1-body phase space distribution function f with 2-body dissipation (collision term I_{coll}) Solution with test particles, exact for $N_{TP} \rightarrow \infty$

include fluctuations around diss. solution

$$f(r,p,t) = \bar{f}(r,p,t) + \delta f(r,p,t)$$

Molecular-Dynamics-like (QMD/AMD)

$$|\Phi\rangle = \bigwedge_{i=1}^{A} \varphi(r; r_i, p_i) |0\rangle$$

$$\dot{r}_i = \{r_i, H\}; \quad \dot{p}_i = \{p_i, H\}; \quad H = \sum_i t_i + \sum_{i,j} V(r_i - r_j)$$

TD-Hartree(-Fock) (or classical molecular dynamics with extended particles, Hamiltonian eq. of motion) plus stochastic NN collisions

No quantum fluctuations, but classical N-body fluctuations, damped by the smoothing.

More fluctuations in QMD than in BUU, since degrees of freedom are nucleons: \rightarrow amount controlled by width of single particle packet ΔL

We will see, that the different amount of fluctuations accounts for much the different behaviour of BUU and QMD

Inelastic collisions: Production of particles and resonances

e.g. pion and kaon production;

coupling of Δ and strangeness channels.

$$\frac{d}{dt}f_{N}(x_{\mu}) = I_{coll}(\sigma_{NN \to NN} f_{N}^{2}; \sigma_{NN \to N\Delta} f_{N}^{2};)$$
$$\frac{d}{dt}f_{\Delta}(x_{\mu}) = I_{coll}(\sigma_{\Delta N \to NYK} f_{N} f_{\Delta};)$$
etc.

Coupled transport equations

Many new potentials, elastic and inelastic cross sections needed, π , Δ dynamics in medium

Sequence of elastic and inelastic scattering in the simulation of the collision term important

Why Code Comparison ?

Boltzmann-Vlasov-like (BUU/BL/BLOB)

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} - \vec{\nabla} U(r) \vec{\nabla}^{(p)} \right) f(\vec{r}, \vec{p}; t)$$

= $I_{coll}[\sigma^{in-med}, f_i]$

6-dim integro-differential, non-linear eq.

Molecular-Dynamics-like (QMD/AMD)

$$|\Phi\rangle = \bigwedge_{i=1}^{A} \varphi(r; r_i, p_i) |0\rangle$$

$$\dot{r}_i = \{r_i, H\}; \quad \dot{p}_i = \{p_i, H\}; \quad H = \sum_i t_i + \sum_{i,j} V(r_i - r_j)$$

6A-dim many body problem + stochastic coll.

→ Transport Code Evaluation (Comparison) Project

Code Comparison: A need for more consistency in HI simulations: examples

Reasons for differences often not clear, since calculations slightly different in the physical parameters.

 \rightarrow therefore comparison of calculations with same physical input,

i.e. under controlled conditions

Code Comparison Project

History:

Workshop in Trento 2004 (1 AGeV regime, mainly particle production π ,K Workshop in Trento 2009 and Shanghai 2014 (Au+Au collisions, 100, 400 AMeV) Workshop ICNT and NuSYM 2017, MSU 2017 (Cascade box calculations) to be continued : Zhuhai (China, 2018) and NuSYM 2018 (Busan, Korea), Transport19 (ECT*?)

Steps in Code Comparison of Transport Simulations

- Full heavy ion collisions (Au+Au, 100, 400 AMeV) comparison of initialization, collision rates and observables
 J. Xu et al., Phys. Rev. C 93, 064609 (2016)
 -> considerable discrepancies, but difficult to disentangle
- 2. Calculations of nuclear matter (box with periodic boundary conditions) test separately ingredients in a transport approach:
- a) collision term without and with blocking (Cascade) done
 - Y.X. Zhang, et al., Phys. Rev. C 97, 034625 (2018)
- b) mean field propagation (Vlasov)

c) pion, Δ production in Cascade

.....

in progress

done

d) instabilities , fragmentation

e) momentum dependent fields **planned**

Γ

Codes participating in the code comparison

BUU type	Code correspondents	Energy range	Reference	QMD type	Code correspondents	Energy range	Reference
BLOB	P. Napolitani, M. Colonna	0.01-0.5	[19]	AMD	A. Ono	0.01-0.3	[28]
GIBUU-RMF	J. Weil	0.05-40	[20]	IQMD-BNU	J. Su, F. S. Zhang	0.05-2	[29]
GIBUU-Skyrme	J. Weil	0.05-40	[20]	IQMD	C. Hartnack, J. Aichelin	0.05 - 2	[30-32]
IBL	W. J. Xie, F. S. Zhang	0.05 - 2	[21]	CoMD	M. Papa	0.01-0.3	[33,34]
IBUU	J. Xu, L. W. Chen, B. A. Li	0.05 - 2	[11,22]	ImQMD-CIAE	Y. X. Zhang, Z. X. Li	0.02-0.4	[35]
pBUU	P. Danielewicz	0.01-12	[23,24]	IQMD-IMP	Z. Q. Feng	0.01-10	[36]
RBUU	K. Kim, Y. Kim, T. Gaitanos	0.05 - 2	[25]	IQMD-SINAP	G. Q. Zhang	0.05 - 2	[37]
RVUU	T. Song, G. Q. Li, C. M. Ko	0.05 - 2	[26]	TuQMD	D. Cozma	0.1 - 2	[38]
SMF	M. Colonna, P. Napolitani	0.01-0.5	[27]	UrQMD	Y. J. Wang, Q. F. Li	0.05-200	[39,40]

 \rightarrow BUU- and QMD-type, most of the commonly used codes

 \rightarrow non-rel. and relativistic codes

 \rightarrow antisymmetrized QMD code: AMD

 \rightarrow BUU codes with explicit fluctuations: SMF, BLOB

→ many new Chinese codes: (I)QMD-XXX: much new activity in China, often originally closely related

I. Set-up of code comparison for full Heavy Ion Collisions

- typical reaction in low and intermediate energy: Au+Au, 100 and 400 AMeV, 7 fm (midcentral)
- simple physics case (not necessarily realistic) standard Skyrme mean field, momentum independent, equivalent RMF constant cross section, no inelastic collisions
- "close" initialization of colliding nuclei prescribed density profile, momentum in local Fermi sphere
- collision and blocking procedures as in standard use of code
- monitor: particle motion, collision numbers, energy and time, Pauli-blocking, observables (rapidity, flow)

PHYSICAL REVIEW C 93, 044609 (2016)

Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions

core group

Jun Xu,^{1,*} Lie-Wen Chen,^{2,†} ManYee Betty Tsang,^{3,‡} Hermann Wolter,^{4,§} Ying-Xun Zhang,^{5,1} Joerg Aichelin,⁶ Maria Colonna, Dan Cozma,⁸ Pawel Danielewicz,³ Zhao-Qing Feng,⁹ Arnaud Le Fèvre,¹⁰ Theodoros Gaitanos,¹¹ Christoph Hartnack,⁶ Kyungil Kim,¹² Youngman Kim,¹² Che-Ming Ko,¹³ Bao-An Li,¹⁴ Qing-Feng Li,¹⁵ Zhu-Xia Li,⁵ Paolo Napolitani,¹⁶ Akira Ono,⁷ Massimo Papa,¹⁸ Taesoo Song,¹⁹ Jun Su,²⁰ Jun-Long Tian,²¹ Ning Wang,²² Yong-Jia Wang,¹⁵ Janus Weil,¹⁹ Wen-Jie Xie,²³ Feng-Shou Zhang,²⁴ and Guo-Qiang Zhang¹

Initialization and Stability

"identical" initialization difficult, since it depends also on repesentation of (test) particles

- prescribed density profile is not neccessarily ground state and may be non-stationary
- diff. initializations affect evolution also in case of a collision

NN Collision rates per energy bin

Observables: average in-plane flow

2. Box calculation comparison

simulation of the static system of infinite nuclear matter, \rightarrow solve transport equation in a periodic box

Useful for many reasons:

- check consistency of calculation e.g. thermodynamical consistency
- check consistency of simulation: collision numbers, blocking (exact limits from kinetic theory)
- check aspects of simulation separately Cascade: only collisions without/with blocking
 - Vlasov: only mean field propagation
- check ingredients of particle production e.g. pion production

PHYSICAL REVIEW C 97, 034625 (2018)

Comparison of heavy-ion transport simulations: Collision integral in a box

Ying-Xun Zhang,^{1,2,*} Yong-Jia Wang,^{3,†} Maria Colonna,^{4,‡} Pawel Danielewicz,^{5,§} Akira Ono,^{6,||} Manyee Betty Tsang,^{5,¶} Hermann Wolter,^{7,#} Jun Xu,^{8,**} Lie-Wen Chen,⁹ Dan Cozma,¹⁰ Zhao-Qing Feng,¹¹ Subal Das Gupta,¹² Natsumi Ikeno,¹³ Che-Ming Ko,¹⁴ Bao-An Li,¹⁵ Qing-Feng Li,^{3,11} Zhu-Xia Li,¹ Swagata Mallik,¹⁶ Yasushi Nara,¹⁷ Tatsuhiko Ogawa,¹⁸ Akira Ohnishi,¹⁹ Dmytro Oliinychenko,²⁰ Massimo Papa,⁴ Hannah Petersen,^{20,21,22} Jun Su,²³ Taesoo Song,^{20,21} Janus Weil,²⁰ Ning Wang,²⁴ Feng-Shou Zhang,^{25,26} and Zhen Zhang¹⁴

good agreement with corresponding exact result collision probability ok

$I_{coll} = \int d\vec{p}_2 d\vec{p}_{1'} d\vec{p}_{2'} v_{21} \sigma_{12}^{in-med}(\Omega) (2\pi)^3 \delta(p_1 + p_2 - p_{1'} - p_{2'}) \Big[f_{1'} f_{2'} (1 - f_1)(1 - f_2) - f_1 f_2 (1 - f_{1'})(1 - f_{2'}) - f_1 f_2 (1 - f_{1'})(1 - f_{2'}) \Big] d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_2 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p}_1 d\vec{p}_1 d\vec{p}_2 d\vec{p$

ImQMD

IQMD

-IMP

JQMD

UrQMD

400

200

p (MeV/c)

with blocking

Sampling of occupation prob. in comp. to prescribed FD distribution (red)

- fluctuation in BUU controlled by TP number, can be made arbritrarily small
- fluctuation in QMD given by width of wave packet

width and averages of calculated occupation numbers in different codes

- prescribed occupation
- average calculated occupation
- average of f<1 occupation (used for the blocking)

Collision rates with blocking 60 Simulation T=5 MeV 50 1st step <dN^{suc}/dt> (c/fm) time averaged Q 40 kinetic theory (exact) Ţ ₽ 30 D 20 . 10 Λ pBUU SMASH TuQMD RVUU ImQMD JQMD UrqMD IBUU SMF CoMD JAM QMD-BNU BUU-VM GiBUU **QMD-IMP**

- almost all codes have too little blocking, i.e. allow too many collisions,
- QMD codes more, because of larger fluctuations

- the momentum distribution moves away from the stable Fermi-Dirac distribution towards the classical Maxwell-Boltzmann distribution (dotted line),
- depending on collision rates

Fluctuations influence dynamics of transport calculations.

However the proper treatment of fluctuations in transport is under debate.

Box simulations: test of m.f. dynamics (in progress! preliminary)

Study the time evolution of ρ(z)
 L = 20 fm

$$\label{eq:rho} \begin{split} \rho(z,t=t_0) &= \rho_0 \ + a_\rho \sin(k_i z) \\ k_i &= n_i \, 2\pi/L, \ a_\rho \ = 0.2 \, \rho \end{split}$$

Maria Colonna

- -- Symmetric matter --
- Only mean-field potential
- No surface terms
- Compressibility K=240 and 500 MeV
- 1. Extract the Fourier transform in space

2. Fourier transform in time: *extract the oscillation frequency*

 $\rho_k(\omega) = \int dt \cos(\omega t) \rho_k(t)$

Time evolution of Fourier transform ρ_k (K=500 MeV)

Generally: strong damping - SMF (BUU-like, dashed curves) smaller no of TP: more damping, larger frequency

- ImQMD (solid curves) increasing width Δx of wave packet: larger fluctuations in QMD \rightarrow stronger damping smaller effective forces in QMD \rightarrow larger frequencies

Gradient along z-axis

- SMF with 40 TP (1 event) good
- QMD too low,

effect of an approximation (which can be improved)

π,Δ production in box cascade calculation: (in progress, preliminary!)

one-way only

Akira Ono and Jun Xu

N, Δ , no pions — kinetic solution (rate eqs.)

 $NN \rightarrow N\Delta$ Dd1P0 asym Code names removed because results preliminary energy dep cross sect. 100 $\sigma(NN \rightarrow N\Delta) = \frac{(\sqrt{s} - 2M_N - M_\pi)^2}{(0.015 \text{ GeV}^2) + (\sqrt{s} - 2M_N - M_\pi)^2} \times 20 \text{ mb}}$ $\sigma(NN \rightarrow N\Delta) =$ 80 60 Δ spectral function 20 $A(m) = \frac{4{M_{\Delta}^0}^2\Gamma_{\Delta}}{(m^2 - {M_{\Delta}^0}^2)^2 + {M_{\Delta}^0}^2\Gamma_{\Delta}^2}$ 0 L 0 75 0 75 0 75 0 75 0 75 0 time [fm/*c*] 75 0 75 0 75 0 75 0 75 Dd2P0 asym Code names removed because results preliminary 30 two-ways Δ Δ Δ Δ 20 Number of particles Δ^0 Δ^0 Δ^0 Δ^0 Δ^0 Δ0 Δ^0 ۸⁰ Δ^0 Δ^0 $NN \leftrightarrow N\Delta$ Δ^{+} $\Delta^{\!+}$ Δ^+ Δ^{+} Δ^+ Δ^{+} Δ* $\Delta^{\!+}$ Δ^+ Δ# Δ# Λ++ Δ# Δ# Δ++ Δ# Λ# Λ^{++} 3 2 0 75 0 75 0 75 0 75 0 75 75 0 75 0 75 0 75 75 0 0 time [fm/c]

Looks reasonably ok! Now switch on pions

π,Δ production in box cascade calculation: (in progress, preliminary!)

now including pions $NN \leftrightarrow N\Delta, \quad \Delta \leftrightarrow N\pi$

kinetic solution (rate eqs.)

Summary

-Transport approaches are an important method to extract physics information from complex nonequilibrium processes, as e.g. heavy ion collisions.

However, there are open problems in the application of transport theories:

- physical (which degrees of freedom, esp. for phase transitions, fluctuations, correlations, short range)
- questions of implementation: simulation, rather than solution of the transport equations
- involves strategies not strictly given by the equations, such as representation of the phase space, coarse graining, criteria for collisions and Pauli blocking
- these may affect the deduction on physical properties from collisions and lead to a kind of systematical theoretical error
- here attempt to understand, quantify and hopefully reduce these uncertainities in a Transport Code Comparison under Controlled Conditions

Results:

- Comparison of full HIC makes evident the discrepancies (initializations, collision term), but difficult to disentangle
- Box calculations to study the different ingredients of transport (collisions, blocking, mf evolution, particle production)
- Important influence of fluctuations on the simulations
- Fluctuations (and correlations) go beyond the one-body description. Implementions differ in BUU (explicit fluctuation term) and QMD (classical correlations + smoothing by wave packet)
- particle production and decay: sequence of treatment in collision term important
- continue in the future, e.g. in fragmentation in instable regime, pion production in full HIC, ...

Thank you for your attention